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Abstract 

Signal processing and classification algorithms often have limited 
applicability resulting from an inaccurate model of the signal's un­
derlying structure. We present here an efficient, Bayesian algo­
rithm for modeling a signal composed of the superposition of brief, 
Poisson-distributed functions. This methodology is applied to the 
specific problem of modeling and classifying extracellular neural 
waveforms which are composed of a superposition of an unknown 
number of action potentials CAPs). Previous approaches have had 
limited success due largely to the problems of determining the spike 
shapes, deciding how many are shapes distinct, and decomposing 
overlapping APs. A Bayesian solution to each of these problems is 
obtained by inferring a probabilistic model of the waveform. This 
approach quantifies the uncertainty of the form and number of the 
inferred AP shapes and is used to obtain an efficient method for 
decomposing complex overlaps. This algorithm can extract many 
times more information than previous methods and facilitates the 
extracellular investigation of neuronal classes and of interactions 
within neuronal circuits. 



Bayesian Modeling and Classification of Neural Signals 591 

1 INTRODUCTION 

Extracellular electrodes typically record the activity of several neurons in the vicin­
ity of the electrode tip (figure 1). Most electrophysiological data is collected by 
isolating action potentials (APs) from a single neuron by using a level detector or 
window discriminator. Methods for extracting APs from multiple neurons can, in 
addition to the obvious advantage of providing more data, provide the means to 
investigate local neuronal interactions and response properties of neuronal popula­
tions. Determining from the voltage waveform what cell fired when is a difficult, 
ill-posed problem which is compounded by the fact that cells frequently fire simul­
taneously resulting in large variations in the observed shapes. 

There are three major difficulties in identifying and classifying action potentials 
(APs) in a neuron waveform. The first is determining the AP shapes, the second is 
deciding the number of distinct shapes, and the third is decomposing overlapping 
spikes into their component parts. In general, these problems cannot be solved 
independently, since the solution of one will affect the solution of the others. 

2: rn_Cl. 
Figure 1: Each neuron generates a stereotyped action potential (AP) which is observed 
through the electrode as a voltage fluctuation. This shape is primarily a function of 
the position of a neuron relative to the tip. The extracellular waveform shows several 
different APs generated by an unknown number of neurons. Note the frequent presence of 
overlapping APs which can completely obscure individual spikes. 

The approach summarized here is to model the waveform directly to obtain a prob­
abilistic description of each action potential and, in turn, of the whole waveform. 
This method allows us to compute the class conditional probabilities of each AP. 
In addition, it is possible to quantify the certainty of both the form and number of 
spike shapes. Finally, we can use this description to decompose overlapping APs 
efficiently and assign probabilities to alternative spike sequences. 

2 MODELING SINGLE ACTION POTENTIALS 

The data from the event observed (at time zero) is modeled as resulting from a 
fixed underlying spike function, s(t), plus noise: 

(1) 
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where v is the parameter vector that defines the spike function. The noise, 1], is 
modeled as Gaussian with zero mean and standard deviation u1]' 

From the Bayesian perspective, the task is to infer the posterior distribution of the 
spike function parameters (assuming, for the moment, that u1] and Uw are known): 

P( ID M) - P(Dlv, 0"'1' M) P(vluw, M) 
v 'O"1]'O"w, - P(DIO"1],O"w,M) . (2) 

The two terms specifying the posterior distribution of v are 1) the probability of 
the data given the model: 

(3) 

and 2) the prior assumptions of the structure of s(t) which are assumed to be of 
the form: 

(4) 

The superscript (m) denotes differentiation which for these demonstrations we as­
sumed to be m = 1 corresponding to linear splines. The smoothness of s(t) is 
controlled through Uw with small values of Uw penalizing large fluctuations. 

The final step in determining the posterior distribution is to eliminate the depen­
dence of P(vID, 0"1]' O"w, M) on 0"1] and O"w. Here, we use the approximation: 

(5) 

The most probable values of 0"1] and O"w were obtained using the methods of MacKay 
(1992) in which reestimation formulas are obtained from a Gaussian approximation 
of the posterior distribution for 0"1] and O"w, P(O"1] , O"wID, M). Correct inference of O"w 
prevents the spike function from overfitting the data. 

3 MODELING MULTIPLE ACTION POTENTIALS 

When a waveform contains multiple types of APs, determining the component spike 
shapes is more difficult because the classes are not known a priori. The uncertainty 
of which class an event belongs to can be incorporated with a mixture distribution. 
The probability of a particular event, D n , given all spike models, M 1 :K , is 

K 

P(Dnlvl:K' 1r, 0"1]' M1 :K) = L 1I"k P(Dnlvk, 0"'1' Mk), 
k=l 

(6) 

where 1I"k is the a priori probability that a spike will be an instance of Mk, and 
E 1I"k = l. 
As before, the objective is to determine the posterior distribution for the parameters 
defining a set of spike models, P(V1 :K, 1rID 1:N , 0"1]1 trw, M1:K) which is obtained again 
using Bayes' rule. 
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Finding the conditions satisfied at a posterior maximum leads to the equation: 

(7) 

where 'Tn is the inferred occurrence time (typically to sub-sample period accuracy) of 
the event Dn. This equation is solved iteratively to obtain the most probable values 
of V l :K • Note that the error for each event, D n , is weighted by P(Mk IOn, Vk, 1r, 0''7) 

which is the probability that the event is an instance of the kth spike model. This is 
a soft clustering procedure, since the events are not explicitly assigned to particular 
classes. Maximizing the posterior yields accurate estimates of the spike functions 
even when the clusters are highly overlapping. 

The techniques described in the previous section are used to determine the most 
probable values for 0''7 and rTw and, in turn, the most probable values of V l :K and 1r. 

4 DETERMINING THE NUMBER OF SPIKE SHAPES 

Choosing a set of spike models that best fit the data, would result eventually in a 
model for each event in the waveform. Heuristics might indicate whether two spike 
models are identical or distinct, but ad hoc criteria are notoriously dependent on 
particular circumstances, and it is difficult to state precisely what information the 
rules take into account. 

To determine the most probable number of spike models, we apply probability theory. 
Let Sj = {MHJ} denote a set of spike models and H denote information known 
a priori. The probability of Sj, conditioned only on H and the data, is obtained 
using Bayes' rule: 

(8) 

The only data-dependent term is P(OI:NISj, H) which is the evidence for Sj 
(MacKay, 1992). With the assumption that all hypotheses SI :3 are equally probable 
a priori, P(D l :NISj, H) ranks alternative spike sets in terms of their probability. 

The evidence term P(OI :N[Sj, H) is convenient because it is the normalizing con­
stant for the posterior distribution of the parameters defining the spike set. Al­
though calculation of P(O I :N I Sj ,H) is analytically intractable, it is often well­
approximated with a Gaussian integral which was the approximation used for these 
demonstrations. 

A convenient way of collapsing the spike set is to compare spike models pairwise. 
Two models in the spike set are selected along with a sampled set of events fit by 
each model. We then evaluate P(DISl) and P(D[S2)' S1 is the hypothesis that 
the data is modeled by a single spike shape, S2 says there are two spike shapes. If 
P(D[S1) > P(D[S2), we replace both models in S2 by the one in S1. The procedure 
terminates when no more pairs can be combined to increase the evidence. 
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5 DECOMPOSING OVERLAPPING SPIKES 

Overlaps must be decomposed into their component spikes for accurate inference 
of the spike functions and accurate classification of the events. Determining the 
best-fitting decomposition is difficult becaus(~ of the enormous number of possible 
spike sequences, not only all possible model combinations for each event but also 
all possible event times. 

A brute-force approach to this problem is to perform an exhaustive search of the 
space of overlapping spike functions and event times to find the sequence with 
maximum probability. This approach was used by Atiya (1992) in the case of two 
overlapping spikes with the times optimized to one sample period. Unfortunately, 
this is often computationally too demanding even for off-line analysis. 

We make this search efficient utilizing dynamic programming and k-dimensional 
trees (Friedman et al., 1977). Once the best-fitting decomposition can be obtained, 
however, it may not be optimal, since adding more spike shapes can overfit the 
data. This problem is minimized by evaluating the probability for alternative de­
compositions to determine the most probable spike sequence (figure 2) . 

a .. ,,' . b' c 

Figure 2: Many spike function sequences can account for the same region of data. The 
thick lines show the data, thin lines show individual spike functions. In this case, the best­
fitting overlap solution is not the most probable: the sequence with 4 spike functions is 
more than 8 time& more probable than the other solutions, even though these have smaller 
mean squared error. Using the best-fitting overlap solution may increase the classification 
error. Classification error is minimized by using t he overlap solution that is most probable. 

6 PERFORMANCE 

The algorithm was tested on 40 seconds of neurophysiological data. The task is 
to determine the form and number of spike ~hapes in a waveform and to infer the 
occurrence times of each spike shape. The output of the algorithm is shown in 
figure 3. The uniformity of the residual error indicates that the six inferred spike 
shapes account for the entire 40 seconds of data. The spike functions M2 and M3 
appear similar by eye, but the probabilities calculated with the methods in section 4 
indicate that the two functions are significantly different. When plotted against each 
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Figure 3: The solid lines are the inferred spike models. The data overlying each model 
is a sample of at most 40 events with overlapping spikes subtracted out. The residual 
errors are plotted below each model. This spike set was obtained after three iterations of 
the algorithm, decomposing overlaps and determining the most probable number of spike 
functions after each iteration. The whole inference procedure used 3 minutes of CPU 
time on a Sparc IPX. Once the spike set is infe! red, classification of the same 40 second 
waveform takes about 10 seconds. 
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other, the two populations of APs are distinctly separated in the region around the 
peak with M3 being wider than M 2 • 

The accuracy of the algorithm was tested by generating an artificial data set com­
posed of the six inferred shapes shown in figure 3. The event times were Poisson 
distributed with frequency equal the inferred firing rate of the real data set. Gaus­
sian noise was then added with standard deviation equal to 0"'1. The classification 
results are summarized in the tables below. 

Table 1: Results of the spike model inference algorithm on the synthesized data set. 

I Model /I 1 I 2 I 3 I 4 I 5 I 6 II 
I b.max/O"fJ II 0.44 I 0.36 I 1.07 I 0.78 I 0.84 I 0.40 II 

The number of spike models was correctly determined by the algorithm with the six-model 
spike set was preferred over the most probable five-model spike set byexp(34) : 1 and over 
the most probable seven-model spike set by exp(19) : 1. The inferred shapes were accurate 
to within a maximum error of 1.0717'1. The row elements show the maximum absolute 
difference, normalized by 17'1' between each true spike function and the corresponding 
inferred function. 

Table 2: Classification results for the synthesized data set (non-overlapping events). 

True Inferred Models Missed Total 
Models 1 2 3 4 5 6 Events Events 

1 17 0 0 0 0 0 0 17 
2 0 25 1 0 0 0 0 26 
3 0 0 15 0 0 0 0 15 
4 0 0 0 116 0 0 1 117 
5 0 0 0 0 56 0 17 73 
6 0 0 0 0 0 393 254 647 

Table 3: Classification results for the synthesized data set (overlapping events). 

True Inferred Models Missed Total 
Models 1 2 3 4 5 6 Events Events 

1 22 0 0 0 0 0 0 22 
2 0 36 1 0 0 0 0 37 
3 0 0 20 0 0 0 0 20 
4 0 1 0 116 0 1 3 121 
5 0 0 0 1 61 1 19 82 
6 0 0 0 3 2 243 160 408 

Tables 2 and 3: Each matrix component indicates the number of times true model i was 
classified as inferred model j. Events were missed if the true spikes were not detected 
in an overlap sequence or if all sample values for the spike fell below the event detection 
threshold (417'1). There was 1 false positive for Ms and 7 for M 6 • 
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7 DISCUSSION 

Formulating the task as having to infer a probabilistic model made clear what was 
necessary to obtain accurate spike models. The soft clustering procedure accurately 
determines the spike shapes even when the true underlying shapes are similar. U n­
less the spike shapes are well-separated, commonly used hard clustering procedures 
will lead to inaccurate estimates. 

Probability theory also allowed for an objective means of determining the number of 
spike models which is an essential reason for the success of this algorithm. With the 
wrong number of spike models overlap decomposition becomes especially difficult . 
The evidence has proved to be a sensitive indicator of when two classes are distinct . 

Probability theory is also essential to accurate overlap decomposition. Simply fit­
ting data with compositions of spike models leads to the same overfitting problem 
encountered in determining the number of spike models and in determining the 
spike shapes. Previous approaches have been able to handle only a limited class of 
overlaps, mainly due to the difficultly in making the fit efficient. The algorithm used 
here can fit an overlap sequence of virtually arbitrary complexity in milliseconds. 

In practice, the algorithm extracts many times more information from a neural 
waveform than previous methods. Moreover, this information is qualitatively dif­
ferent from a simple list of spike times. Having reliable estimates of the action 
potential shapes makes it possible to study the properties of these classes, since 
distinct neuronal types can have distinct neuronal spikes. Finally, accurate over­
lap decomposition makes it possible to investigate interactions among local neurons 
which were previously very difficult to observe. 
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