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Abstract 

A new classifier is presented for text-independent speaker recognition. The 
new classifier is called the modified neural tree network (MNTN). The 
NTN is a hierarchical classifier that combines the properties of decision 
trees and feed-forward neural networks. The MNTN differs from the stan­
dard NTN in that a new learning rule based on discriminant learning 
is used, which minimizes the classification error as opposed to a norm 
of the approximation error. The MNTN also uses leaf probability mea­
sures in addition to the class labels. The MNTN is evaluated for several 
speaker identification experiments and is compared to multilayer percep­
trons (MLPs) , decision trees, and vector quantization (VQ) classifiers. The 
VQ classifier and MNTN demonstrate comparable performance and per­
form significantly better than the other classifiers for this task. Addition­
ally, the MNTN provides a logarithmic saving in retrieval time over that 
of the VQ classifier. The MNTN and VQ classifiers are also compared 
for several speaker verification experiments where the MNTN is found to 
outperform the VQ classifier. 

1 INTRODUCTION 

Automatic speaker recognition consists of having a machine recognize a person based 
on his or her voice. Automatic speaker recognition is comprised of two categories: 
speaker identification and speaker verification. The objective of speaker identifi­
cation is to identify a person within a fixed population based on a test utterance 
from that person. This is contrasted to speaker verification where the objective is 
to verify a person's claimed identity based on the test utterance. 
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Speaker recognition systems can be either text dependent or text independent. 
Text-dependent speaker recognition systems require that the speaker utter a specific 
phrase or a given password. Text-independent speaker identification systems iden­
tify the speaker regardless of the utterance. This paper focuses on text-independent 
speaker identification and speaker verification tasks. 

A new classifier is introduced and evaluated for speaker recognition. The new clas­
sifier is the modified neural tree network (MNTN). The MNTN incorporates mod­
ifications to the learning rule of the original NTN [1] and also uses leaf probability 
measures in addition to the class labels. Also, vector quantization (VQ) classifiers, 
multilayer perceptrons (MLPs), and decision trees are evaluated for comparison. 

This paper is organized as follows. Section 2 reviews the neural tree network and 
discusses the modifications. Section 3 discusses the feature extraction and classifica­
tion phases used here for text-independent speaker recognition. Section 4 describes 
the database used and provides the experimental results. The summary and con­
clusions of the paper are given in Section 5. 

2 THE MODIFIED NEURAL TREE NETWORK 

The NTN [1] is a hierarchical classifier that uses a tree architecture to implement 
a sequential linear decision strategy. Each node at every level of the NTN divides 
the input training vectors into a number of exclusive subsets of this data. The 
leaf nodes of the NTN partition the feature space into homogeneous subsets, i.e., 
a single class at each leaf node. The NTN is recursively trained as follows. Given 
a set of training data at a particular node, if all data within that node belongs to 
the same class, the node becomes a leaf. Otherwise, the data is split into several 
subsets, which become the children of this node. This procedure is repeated until 
all the data is completely uniform at the leaf nodes. 

For each node the NTN computes the inner product of a weight vector wand an 
input feature vector x, which should be approximately equal to the the output 
label y E {O,1}. Traditional learning algorithms minimize a norm of the error 
€ = (y- < w, x », such as the L2 or L1 norm. The splitting algorithm of the 
modified NTN is based on discriminant learning [2]. Discriminant learning uses a 
cost function that minimizes the classification error. 

For an M class NTN, the discriminant learning approach first defines a misclassifi­
cation measure d( x) as [2]: 

1 

d( x) = - < Wi, X > + { M ~ 1 I) < Wj, x > t } n , 
jf;i 

(1) 

where n is a predetermined smoothing constant. If x belongs to class i, then d(x) 
will be negative, and if x does not belong to class i, d( x) will be positive. The 
misclassification measure d( x) is then applied to a sigmoid to yield: 

1 
g[d(x)] = d( ). (2) 

1 + e- x 

The cost function in equation (2) is approximately zero for correct classifications 
and one for misclassifications. Hence, minimizing this cost function will tend to 
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Figure 1: Forward Pruning and Confidence Measures 

mmlmize the classification error. It is noted that for binary NTNs, the weight 
updates obtained by the discriminant learning approach and the Ll norm of the 
error are equivalent [3]. 

The NTN training algorithm described above constructs a tree having 100% per­
formance on the training set. However, an NTN trained to this level may not have 
optimal generalization due to overtraining. The generalization can be improved 
by reducing the number of nodes in a tree, which is known as pruning. A tech­
nique known as backward pruning was recently proposed [1] for the NTN. Given a 
fully grown NTN, i.e., 100% performance on the training set, the backward pruning 
method uses a Lagrangian cost function to minimize the classification error and 
the number of leaves in the tree. The method used here prunes the tree during its 
growth, hence it is called forward pruning. 

The forward pruning algorithm consists of simply truncating the growth of the tree 
beyond a certain level. For the leaves at the truncated level, a vote is taken and 
the leaf is assigned the label of the majority. In addition to a label, the leaf is 
also assigned a confidence. The confidence is computed as the ratio of the number 
of elements for the vote winner to the total number of elements. The confidence 
provides a measure of confusion for the different regions of feature space. The 
concept of forward pruning is illustrated in Figure 1. 

3 FEATURE EXTRACTION AND CLASSIFICATION 

The process of feature extraction consists of obtaining characteristic parameters of 
a signal to be used to classify the signal. The extraction of salient features is a 
key step in solving any pattern recognition problem. For speaker recognition, the 
features extracted from a speech signal should be invariant with regard to the desired 
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Figure 2: Classifier Structure for Speaker Recognition 

speaker while exhibiting a large distance to any imposter. Cepstral coefficients are 
commonly used for speaker recognition [4] and shall be considered here to evaluate 
the classifiers. 

The classification stage of text-independent speaker recognition is typically imple­
mented by modeling each speaker with an individual classifier. The classifier struc­
ture for speaker recognition is illustrated in Figure 2. Given a specific feature vector, 
each speaker model associates a number corresponding to the degree of match with 
that speaker. The stream of numbers obtained for a set of feature vectors can be 
used to obtain a likelihood score for each speaker model. For speaker identification, 
the feature vectors for the test utterance are applied to all speaker models and the 
corresponding likelihood scores are computed. The speaker is selected as having 
the largest score. For speaker verification, the feature vectors are applied only to 
the speaker model for the speaker to be verified. If the likelihood score exceeds a 
threshold, the speaker is verified or else is rejected. 

The classifiers for the individual speaker models are trained using either supervised 
or unsupervised training methods. For supervised training methods the classifier for 
each speaker model is presented with the data for all speakers. Here, the extracted 
feature vectors for that speaker are labeled as "one" and the extracted feature vec­
tors for everyone else are labeled as "zero" . The supervised classifiers considered 
here are the multilayer perceptron (MLP), decision trees, and modified neural tree 
network (MNTN). For unsupervised training methods each speaker model is pre­
sented with only the extracted feature vectors for that speaker. This data can 
then be clustered to determine a set of centroids that are representative of that 
speaker. The unsupervised classifiers evaluated here are the full-search and tree­
structure vector quantization classifiers, henceforth denoted as FSVQ and TSVQ. 
Speaker models based on supervised training capture the differences of that speaker 
to other speakers, whereas models based on unsupervised training use a similarity 
measure. 

Specifically, a trained NTN can be applied to speaker recognition as follows. Given 
a sequence of feature vectors x from the test utterance and a trained NTN for 
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speaker Si, the corresponding speaker score is found as the "hit" ratio: 

(3) 

Here. M is the number of vectors classified as "one" and N is the number of vec­
tors classified as "zero" . The modified NTN computes a hit ratio weighed by the 
confidence scores: 

",M 1 
L..Jj=l Cj 

PMNTN(xISi) = ",N 0 ",M l' 
L..JJ=l Cj + L..JJ=l cj 

(4) 

where c1 and cO are the confidence scores for the speaker and antispeaker, respec­
tively. These scores can be used for decisions regarding identification or verification. 

4 EXPERIMENTAL RESULTS 

4.1 Database 

The database considered for the speaker identification and verification experiments 
is a subset of the DARPA TIMIT database. This set represents 38 speakers of the 
same (New England) dialect. The preprocessing of the TIMIT speech data consists 
of several steps. First, the speech is downsampled from 16KHz to 8 KHz sampling 
frequency. The downsampling is performed to obtain a toll quality signal. The 
speech data is processed by a silence removing algorithm followed by the application 
of a pre-emphasis filter H(z) = 1-0.95z-1 . A 30 ms Hamming window is applied to 
the speech every 10 ms. A twelfth order linear predictive (LP) analysis is performed 
for each speech frame. The features consist of the twelve cepstral coefficients derived 
from this LP polynomial. 

There are 10 utterances for each speaker in the selected set. Five of the utterances 
are concatenated and used for training. The remaining five sentences are used 
individually for testing. The duration of the training data ranges from 7 to 13 
seconds per speaker and the duration of each test utterance ranges from 0.7 to 3.2 
seconds. 

4.2 Speaker Identification 

The first experiment is for closed set speaker identification using 10 and 20 speakers 
from the TIMIT New England dialect. The identification is closed set in that the 
speaker is assumed to be one of the 10 or 20 speakers, i.e., no "none of the above" 
option. The NTN, MLP [5], and VQ [4] classifiers are each evaluated on this data in 
addition to the ID3 [6], C4 [7], CART [8], and Bayesian [9] decision trees. The VQ 
classifier is trained using a K-means algorithm and tested for codebook sizes varying 
from 16 to 128 centroids. The MNTN used here is pruned at levels ranging from the 
fourth through seventh. The MLP is trained using the backpropagation algorithm 
[10] for architectures having 16, 32, and 64 hidden nodes (within one hidden layer). 
The results are summarized in Table 1. The * denotes that the CART tree could 
not be grown for the 20 speaker experiment due to memory limitations. 



1040 Farrell and Mammone 

Classifier 

ID3 
CART 

C4 

Table 1: Speaker Identification Experiments 

4.3 Speaker Verification 

The FSVQ classifier and MNTN are evaluated next for speaker verification. The 
first speaker verification experiment consists of 10 speakers and 10 imposters (i.e., 
people not used in the training set). The second speaker verification experiment 
uses 20 enrolled speakers and 18 imposters. The MNTN is pruned at the seventh 
level (128 leaves) and the FSVQ classifier has a codebook size of 128 entries. 

Speaker verification performance can be enhanced by using a technique known as 
cohort normalization [11]. Traditional verification systems accept a speaker if: 

p(XII) > T(I), (5) 

where p( X I I) is the likelihood that the sequence of feature vectors X was generated 
by speaker I and T( I) is the corresponding likelihood threshold. Instead of using 
the fixed threshold criteria in equation (5), an adaptive threshold can be used via 
the likelihood measure: 

P(XII) T(I). 
P(XII) > 

(6) 

Here, the speaker score is first normalized by the probability that the feature vectors 
X were generated by a speaker other than I. The likelihood p(XII) can be estimated 
with the scores of the speaker models that are closest to I, denoted as 1's cohorts 
[11]. This estimate can consist of a maximum, minimum, average, etc., depending 
on the classifier used. 

The threshold for the VQ and MNTN likelihood scores are varied from the point 
of 0% false acceptance to 0% false rejection to yield the operating curves shown 
in Figures 3 and 4 for the 10 and 20 speaker populations, respectively. Note that 
all operating curves presented in this section for speaker verification represent the 
posterior performance of the classifiers, given the speaker and imposter scores. Here 
it can be seen that the MNTN and VQ classifiers are both improved by the cohort 
normalized scores. The equal error rates for the MNTN and VQ classifier are 
summarized in Table 2. 

For both experiments (10 and 20 speakers), the MNTN provides better performance 
than the VQ classifier, both with and without cohort normalization, for most of the 
operating curve. 
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MNTN 

10 Speakers 
20 Speakers 

(]) 
Vl 

Table 2: Equal error rates for speaker verification 
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Figure 3: Speaker Verification (10 Speakers) 

Speaker Verification (20 speakers) 
0.45,------r----.---_r_---..------,-----, 

0 .4 . .. . .... . .. ... : .. ..... .. . __ ... . ; ... . . ..... . .... ; .... .. . . . .. .. . -.~ - .- .... .. ...... : .... ...... .... . 
· . . . . · . . . . , . . . . . , . . , . " . . .. 

0.35 .... ... .... .. .. ;. .. .. .. .. ... .... : . .. ..... .... . .. , .. .... ·· ···· ····:· ····· ··· ···· ··· i··· ··· ·· ·· ·· ·· 
: ~ : -+ va ~ : 
: : : - va with cohort : 0.3 i' .... ·· .. .. .. : .... .. .... · .. · .. : ...... .. · .. · .. ·:·· .. .......... .. f .. ............ ·~ .. · .. ·· ....... . 

n. . . . -. MNTN , . 

10.25 ~: .. .. ·· ······ j· .. ···· ·· ...... ·f .. · .. .. ·· .. ·· .. ~· ::·MNI~·1i!~ .. ~~.9n· · ·i ·· · ··· .. .... ··· 
· . . . 
: : : 

0.1 

0.05 ... .... --.~ . .. ..... . -_ ... , .;. . ..... . . ... . .. ~ .... .......... . 
· . · . 

oL-----~~~~~--~--~~====~~--~ 
o 0.02 0.04 0.06 0.08 0.1 0.12 

P(Faisa Accept) 

Figure 4: Speaker Verification (20 Speakers) 
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5 CONCLUSION 

A new classifier called the modified NTN is examined for text-independent speaker 
recognition. The performance of the MNTN is evaluated for several speaker recog­
nition experiments using various sized speaker sets from a 38 speaker corpus. The 
features used to evaluate the classifiers are the LP-derived cepstrum. The MNTN is 
compared to full-search and tree-structured VQ classifiers, multi-layer perceptrons, 
and decision trees. The FSVQ and MNTN classifiers both demonstrate equivalent 
performance for the speaker identification experiments and outperform the other 
classifiers. For speaker verification, the MNTN consistently outperforms the FSVQ 
classifier. In addition to performance advantages for speaker verification, the MNTN 
also demonstrates a logarithmic saving in retrieval time over that of the FSVQ clas­
sifier . This computational advantage can be obtained by using TSVQ, although 
TSVQ will reduce the performance with respect to FSVQ. 

6 ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the support of Rome Laboratories, Contract 
No. F30602-91-C-OI20. The decision tree simulations utilized the IND package 
developed by W. Buntine of NASA. 

References 

[1] A. Sankar and R.J. Mammone. Growing and pruning neural tree networks. 
IEEE Transactions on Computers, C-42:221-229, March 1993. 

[2] S. Katagiri, B.H J uang, and A. Biemo Discriminative feature extraction. In 
Artificial Neural Networks for Speech and Vision Processing , edited by R.J. 
Mammone. Chapman and Hall, 1993. 

[3] K.R. Farrell. Speaker Recognition Using the Modified Neural Tree Network. 
PhD thesis, Rutgers University, Oct. 1993. 

[4] F.K. Soong, A.E. Rosenberg, L.R. Rabiner, and B.H. Juang. A vector quanti­
zation approach to speaker recognition. In Proceedings ICASSP, 1985. 

[5] J. Oglesby and J .S. Mason. Optimization of neural models for speaker identi­
fication. In Proceedings ICASSP, pages 261-264, 1990. 

[6] J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986. 

[7] J. Quinlan. Simplifying decision trees in Knowledge Acquisition for K now ledge­
Based Systems, by G. Gaines and J. Boose. Academic Press, London, 1988. 

[8] 1. Breiman, J .H. Friedman, R.A. Olshen, and C.J. Stone. Classification and 
Regression Trees. Wadsworth international group, Belmont, CA, 1984. 

[9] W. Buntine. Learning classification trees. Statistics and Computing, 2:63-73, 
1992. 

[10] D.E. Rumelhart and J .L. McClelland. Parallel Distributed Processing. MIT 
Cambridge Press, Cambridge, Ma, 1986. 

[11] A.E. Rosenberg, J. Delong, C.H. Lee, B.H. Juang, and F.K. Soong. The use of 
cohort normalized scores for speaker recognition. In Proc. ICSLP, Oct. 1992. 


