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Abstract 

Semi-Markov Decision Problems are continuous time generaliza­
tions of discrete time Markov Decision Problems. A number of 
reinforcement learning algorithms have been developed recently 
for the solution of Markov Decision Problems, based on the ideas 
of asynchronous dynamic programming and stochastic approxima­
tion. Among these are TD(,x), Q-Iearning, and Real-time Dynamic 
Programming. After reviewing semi-Markov Decision Problems 
and Bellman's optimality equation in that context, we propose al­
gorithms similar to those named above, adapted to the solution of 
semi-Markov Decision Problems. We demonstrate these algorithms 
by applying them to the problem of determining the optimal con­
trol for a simple queueing system. We conclude with a discussion 
of circumstances under which these algorithms may be usefully ap­
plied. 

1 Introduction 

A number of reinforcement learning algorithms based on the ideas of asynchronous 
dynamic programming and stochastic approximation have been developed recently 
for the solution of Markov Decision Problems. Among these are Sutton's TD(,x) 
[10], Watkins' Q-Iearning [12], and Real-time Dynamic Programming (RTDP) [1, 



394 Steven Bradtke, Michael O. Duff 

3]. These learning alogorithms are widely used, but their domain of application 
has been limited to processes modeled by discrete-time Markov Decision Problems 
(MDP's). 

This paper derives analogous algorithms for semi-Markov Decision Problems 
(SMDP's) - extending the domain of applicability to continuous time. This ef­
fort was originally motivated by the desire to apply reinforcement learning methods 
to problems of adaptive control of queueing systems, and to the problem of adaptive 
routing in computer networks in particular. We apply the new algorithms to the 
well-known problem of routing to two heterogeneous servers [7]. We conclude with 
a discussion of circumstances under which these algorithms may be usefully applied. 

2 Semi-Markov Decision Problems 

A semi-Markov process is a continuous time dynamic system consisting of a count­
able state set, X, and a finite action set, A. Suppose that the system is originally 
observed to be in state z EX, and that action a E A is applied. A semi-Markov 
process [9] then evolves as follows: 

• The next state, y, is chosen according to the transition probabilities Pz,(a) 

• A reward rate p(z, a) is defined until the next transition occurs 

• Conditional on the event that the next state is y, the time until the tran­
sition from z to y occurs has probability distribution Fz,(·Ja) 

One form of the SMDP is to find a policy the minimizes the expected infinite horizon 
discounted cost, the "value" for each state: 

e {IoOO e-.Bt p(z(t), a(t»dt}, 

where z(t) and aCt) denote, respectively, the state and action at time t. 

For a fixed policy 71', the value of a given state z must satisfy 

v,..(z) 

Defining 

L Pz ,(7I'(z» (00 r e-.B· p(z, 71'(z»dsdFz,(tJ7I'(z» + 
X 10 10 

,E 

L Pz,(7I'(Z» fooo e-.Bt V,..(y)dFz,(tJ7I'(z». 
,EX 

R(z, y, a) = foOO fot e-.B· p(z, 71'(z»dsdFz, (tJ7I'(z», 

(1) 

the expected reward that will be received on transition from state z to state y on 
action a, and 
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the expected discount factor to be applied to the value of state y on transition 
from state z on action a, it is clear that equation (1) is nearly identical to the 
value-function equation for discrete time Markov reward processes, 

Vw(z) = R(z, 1I"(z» + "Y I: Pzr ( 1I"(z»Vw (Y), 
rEX 

(2) 

where R(z, a) = :ErEx Pzr(a)R(z, y, a). If transition times are identically one for 
an SMDP, then a standard discrete-time MDP results. 

Similarly, while the value function associated with an optimal policy for an MDP 
satisfies the Bellman optimality equation 

Ve(z) = max {R(Z' a) + "Y I: pzr(a)v*(y)} , (3) 
ilEA X rE 

the optimal value function for an SMDP satisfies the following version of the Bellman 
optimality equation: 

V*(z) = max { I: Pzr(a) 100 r e-fJa p(z, a)dsdFzr(tJa) + 
ilEA X 0 10 rE 

I: Pzr(a) loo e-fJtv*(y)dFzr(tJa)} . (4) 
rEX 

3 Temporal Difference learning for SMDP's 

Sutton's TD(O) [10] is a stochastic approximation method for finding solutions to 
the system of equations (2). Having observed a transition from state z to state y 

with sample reward r(z, y, 1I"(z», TD(O) updates the value function estimate V(A:)(z) 
in the direction of the sample value r(z, y, 1I"(z»+"YV(A:)(y). The TD(O) update rule 
for MDP's is 

V(A:+l)(Z) = V(A:)(z) + QA:[r(z, y, 1I"(z» + "YV(A:)(y) - V(A:)(z)], (5) 
where QA: is the learning rate. The sequence of value-function estimates generated 
by the TD(O) proceedure will converge to the true solution, Vw , with probability 
one [5,8, 11] under the appropriate conditions on the QA: and on the definition of the 
MDP. 

The TD(O) learning rule for SMDP's, intended to solve the system of equations (1) 
given a sequence of sampled state transitions, is: 

[ 1 -fJT ] V(A:+1)(z) = V(A:)(z) + QA: -; r(z, y, 1I"(z» + e-fJTV(A:)(y) - V(A:)(z) , (6) 

where the sampled transition time from state z to state y was T time units, 

I_p-tl .. r(z, y, 1I"(z» is the sample reward received in T time units, and e-fJT is the 

sample discount on the value of the next state given a transition time of T time 
units. The TD(>.) learning rule for SMDP's is straightforward to define from here. 
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4 Q-Iearning for SMDP's 

Denardo [6] and Watkins [12] define Q.f) the Q-function corresponding to the policy 
71", as 

Q'II"(z, a) = R(z, a) + 'Y 2: PzJ(a)V'II"(Y) (7) 

YEX 

Notice that a can be any action. It is not necesarily the action 7I"(z) that would be 
chosen by policy 71". The function Q. corresponds to the optimal policy. Q'II"(z, a) 
represents the total discounted return that can be expected if any action is taken 
from state z, and policy 71" is followed thereafter. Equation (7) can be rewritten as 

Q'II"(z, a) = R(z, a) + 'Y 2: PZJ(a)Q'II"(Y' 7I"(Y», 
yEX 

and Q. satisfies the Bellman-style optimality equation 

Q·(z, a) = R(z, a) + 'Y 2: Pzy(a) max Q.(y, a'), 
A'EA 

JEX 

(8) 

(9) 

Q-Iearning, first described by Watkins [12], uses stochastic approximation to itera­
tively refine an estimate for the function Q •. The Q-Iearning rule is very similar to 
TD(O). Upon a sampled transition from state z to state y upon selection of a, with 
sampled reward r(z, y, a), the Q-function estimate is updated according to 

Q(A:+l)(Z, a) = Q(J:)(z, a) + etJ: [r(z, y, a) + 'Y ~~ Q(J:)(y, a') - Q(J:)(z, a)]. (10) 

Q-functions may also be defined for SMDP's. The optimal Q-function for an SMDP 
satisfies the equation 

2: PZJ(a) roo t e-tJ• p(z, a)dsdFzJ(tla) + 
'V 10 10 

JE"-

Q·(z, a) 

2: Pz1I (a) roo e-tJt max Q.(y, a')dFzJ(tla). (11) 
'V 10 A'EA 

JE"-

This leads to the following Q-Iearning rule for SMDP's: 

Q(A:+l)(Z, a) = Q(J:)(z, a)+etJ: [1 -;-tJ'r' r(z, y, a) + e-tJ'r' ~~ Q(J:)(y, a') _ Q(J:)(z, a)] 

(12) 

5 RTDP and Adaptive RTDP for SMDP's 

The TD(O) and Q-Iearning algorithms are model-free, and rely upon stochastic 
approximation for asymptotic convergence to the desired function (V'll" and Q., re­
spectively). Convergence is typically rather slow. Real-Time Dynamic Program­
ming (RTDP) and Adaptive RTDP [1,3] use a system model to speed convergence. 
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RTDP assumes that a system model is known a priori; Adaptive RTDP builds a 
model as it interacts with the system. As discussed by Barto et al. [1], these asyn­
chronous DP algorithms can have computational advantages over traditional DP 
algorithms even when a system model is given. 

Inspecting equation (4), we see that the model needed by RTDP in the SMDP 
domain consists of three parts: 

1. the state transition probabilities Pzy(a), 

2. the expected reward on transition from state z to state y using action a, 
R(z, y, a), and 

3. the expected discount factor to be applied to the value of the next state on 
transition from state z to state y using action a, 'Y(z, y, a). 

If the process dynamics are governed by a continuous time Markov chain, then the 
model needed by RTDP can be analytically derived through uniJormization [2]. In 
general, however, the model can be very difficult to analytically derive. In these 
cases Adaptive RTD P can be used to incrementally build a system model through 
direct interaction with the system. One version of the Adaptive RTDP algorithm 
for SMDP's is described in Figure 1. 

1 Set k = 0, and set Zo to some start state. 

2 Initialize P, R, and ~. 
3 repeat forever { 
4 For all actions a, compute 

Q(Ie)(ZIe,a) = L P .. "v(a) [ R(zIe,y,a) +~(zIe,y,a)V(Ie)(y) ] 

veX 

5 Perform the update V(le+l)(ZIe) = minoeA Q(Ie)(zIe,a) 
6 Select an action, ale. 
7 Perform ale and observe the transition to ZIe+l after T time units. Update 

P. Use the sample reward 1 __ ;;11'" r(ZIe,Zle+l,ale) and the sample discount 

factor e-f3T to update R and ~. 
8 k=k+l 
9 } 

Figure 1: Adaptive RTDP for SMDP's. P, il, and .y are the estimates maintained 
by Adaptive RTDP of P, R, and 'Y. 

Notice that the action selection procedure (line 6) is left unspecified. Unlike RTDP, 
Adaptive RTDP can not always choose the greedy action. This is because it only has 
an e8timate of the system model on which to base its decisions, and the estimate 
could initially be quite inaccurate. Adaptive RTDP needs to explore, to choose 
actions that do not currently appear to be optimal, in order to ensure that the 
estimated model converges to the true model over time. 
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6 Experiment: Routing to two heterogeneous servers 

Consider the queueing system shown in Figure 2. Arrivals are assumed to be Poisson 
with rate ).. Upon arrival, a customer must be routed to one of the two queues, 
whose servers have service times that are exponentially distributed with parameters 
J.l.1 and J.l.2 respectively. The goal is compute a policy that minimizes the objective 
function: 

e {foOO e-tJt [c1n1(t) + C2n2(t)]dt}, 

where C1 and C2 are scalar cost factors, and n1(t) and n2(t) denote the number of 
customers in the respective queues at time t. The pair (n1(t), n2(t)) is the state of 
the system at time t; the state space for this problem is countably infinite. There 
are two actions available at every state: if an arrival occurs, route it to queue 1 or 
route it to queue 2. 

-.<-~ 
___ -.J~ 

Figure 2: Routing to two queueing systems. 

It is known for this problem (and many like it [7]), that the optimal policy is a 
threshold policy; i.e., the set of states Sl for which it is optimal to route to the 
first queue is characterized by a monotonically nondecreasing threshold function F 
via Sl = {(nl,n2)ln1 $ F(n2)}' For the case where C1 = C2 = 1 and J.l.1 = J.l.2, 
the policy is simply to join the shortest queue, and the theshold function is a line 
slicing diagnonally through the state space. 

We applied the SMDP version of Q-Iearning to this problem in an attempt to find 
the optimal policy for some subset of the state space. The system parameters were 
set to ). = J.l.1 = J.l.2 = 1, /3 = 0.1, and C1 = C2 = 1. We used a feedforward neural 
network trained using backpropagation as a function approximator. 

Q-Iearning must take exploratory actions in order to adequately sample all of the 
available state transitions. At each decision time k, we selected the action aA: to be 
applied to state ZA: via the Boltzmann distribution 

where TA: is the "computational temperature." The temperature is initialized to a 
relatively high value, resulting in a uniform distribution for prospective actions. TA: 
is gradually lowered as computation proceeds, raising the probability of selecting 
actions with lower (and for this application, better) Q-values. In the limit, the action 
that is greedy with respect to the Q-function estimate is selected. The temperature 
and the learning rate erA: are decreased over time using a "search then converge" 
method [4]. 
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Figure 3 shows the results obtained by Q-Iearning for this problem. Each square 
denotes a state visited, with nl(t) running along the z-axis, and n2(t) along the y­
axis. The color of each square represents the probability of choosing action 1 (route 
arrivals to queue 1). Black represents probability 1, white represents probability o. 
An optimal policy would be black above the diagonal, white below the diagonal, 
and could have arbitrary colors along the diagonal. 
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Figure 3: Results of the Q-Iearning experiment. Panel A represents the policy after 
50,000 total updates, Panel B represents the policy after 100,000 total updates, and 
Panel C represents the policy after 150,000 total updates. 

One unsatisfactory feature of the algorithm's performance is that convergence is 
rather slow, though the schedules governing the decrease of Boltzmann temperature 
TA: and learning rate 0A: involve design parameters whose tweakings may result in 
faster convergence. If it is known that the optimal policies are of theshold type, 
or that some other structural property holds, then it may be of extreme practical 
utility to make use of this fact by constraining the value-functions in some way or 
perhaps by representing them as a combination of appropriate basis vectors that 
implicity realize or enforce the given structural property. 

7 Discussion 

In this paper we have proposed extending the applicability of well-known reinforce­
ment learning methods developed for discrete-time MDP's to the continuous time 
domain. We derived semi-Markov versions of TD(O), Q-Iearning, RTDP, and Adap­
tive RTDP in a straightforward way from their discrete-time analogues. While we 
have not given any convergence proofs for these new algorithms, such proofs should 
not be difficult to obtain if we limit ourselves to problems with finite state spaces. 
(Proof of convergence for these new algorithms is complicated by the fact that, in 
general, the state spaces involved are infinite; convergence proofs for traditional 
reinforcement learning methods assume the state space is finite.) Ongoing work 
is directed toward applying these techniques to more complicated systems, exam­
ining distributed control issues, and investigating methods for incorporating prior 
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knowledge (such as structured function approximators). 
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