
Reinforcement Learning Methods for
Continuous-Time Markov Decision

Problems

Steven J. Bradtke
Computer Science Department

University of Massachusetts
Amherst, MA 01003

bradtkeGcs.umass.edu

Michael O. Duff
Computer Science Department

University of Massachusetts
Amherst, MA 01003
duffGcs.umass.edu

Abstract

Semi-Markov Decision Problems are continuous time generaliza­
tions of discrete time Markov Decision Problems. A number of
reinforcement learning algorithms have been developed recently
for the solution of Markov Decision Problems, based on the ideas
of asynchronous dynamic programming and stochastic approxima­
tion. Among these are TD(,x), Q-Iearning, and Real-time Dynamic
Programming. After reviewing semi-Markov Decision Problems
and Bellman's optimality equation in that context, we propose al­
gorithms similar to those named above, adapted to the solution of
semi-Markov Decision Problems. We demonstrate these algorithms
by applying them to the problem of determining the optimal con­
trol for a simple queueing system. We conclude with a discussion
of circumstances under which these algorithms may be usefully ap­
plied.

1 Introduction

A number of reinforcement learning algorithms based on the ideas of asynchronous
dynamic programming and stochastic approximation have been developed recently
for the solution of Markov Decision Problems. Among these are Sutton's TD(,x)
[10], Watkins' Q-Iearning [12], and Real-time Dynamic Programming (RTDP) [1,

394 Steven Bradtke, Michael O. Duff

3]. These learning alogorithms are widely used, but their domain of application
has been limited to processes modeled by discrete-time Markov Decision Problems
(MDP's).

This paper derives analogous algorithms for semi-Markov Decision Problems
(SMDP's) - extending the domain of applicability to continuous time. This ef­
fort was originally motivated by the desire to apply reinforcement learning methods
to problems of adaptive control of queueing systems, and to the problem of adaptive
routing in computer networks in particular. We apply the new algorithms to the
well-known problem of routing to two heterogeneous servers [7]. We conclude with
a discussion of circumstances under which these algorithms may be usefully applied.

2 Semi-Markov Decision Problems

A semi-Markov process is a continuous time dynamic system consisting of a count­
able state set, X, and a finite action set, A. Suppose that the system is originally
observed to be in state z EX, and that action a E A is applied. A semi-Markov
process [9] then evolves as follows:

• The next state, y, is chosen according to the transition probabilities Pz,(a)

• A reward rate p(z, a) is defined until the next transition occurs

• Conditional on the event that the next state is y, the time until the tran­
sition from z to y occurs has probability distribution Fz,(·Ja)

One form of the SMDP is to find a policy the minimizes the expected infinite horizon
discounted cost, the "value" for each state:

e {IoOO e-.Bt p(z(t), a(t»dt},

where z(t) and aCt) denote, respectively, the state and action at time t.

For a fixed policy 71', the value of a given state z must satisfy

v,..(z)

Defining

L Pz ,(7I'(z» (00 r e-.B· p(z, 71'(z»dsdFz,(tJ7I'(z» +
X 10 10

,E

L Pz,(7I'(Z» fooo e-.Bt V,..(y)dFz,(tJ7I'(z».
,EX

R(z, y, a) = foOO fot e-.B· p(z, 71'(z»dsdFz, (tJ7I'(z»,

(1)

the expected reward that will be received on transition from state z to state y on
action a, and

Reinforcement Learning Methods for Continuous-Time Markov Decision Problems 395

the expected discount factor to be applied to the value of state y on transition
from state z on action a, it is clear that equation (1) is nearly identical to the
value-function equation for discrete time Markov reward processes,

Vw(z) = R(z, 1I"(z» + "Y I: Pzr (1I"(z»Vw (Y),
rEX

(2)

where R(z, a) = :ErEx Pzr(a)R(z, y, a). If transition times are identically one for
an SMDP, then a standard discrete-time MDP results.

Similarly, while the value function associated with an optimal policy for an MDP
satisfies the Bellman optimality equation

Ve(z) = max {R(Z' a) + "Y I: pzr(a)v*(y)} , (3)
ilEA X rE

the optimal value function for an SMDP satisfies the following version of the Bellman
optimality equation:

V*(z) = max { I: Pzr(a) 100 r e-fJa p(z, a)dsdFzr(tJa) +
ilEA X 0 10 rE

I: Pzr(a) loo e-fJtv*(y)dFzr(tJa)} . (4)
rEX

3 Temporal Difference learning for SMDP's

Sutton's TD(O) [10] is a stochastic approximation method for finding solutions to
the system of equations (2). Having observed a transition from state z to state y

with sample reward r(z, y, 1I"(z», TD(O) updates the value function estimate V(A:)(z)
in the direction of the sample value r(z, y, 1I"(z»+"YV(A:)(y). The TD(O) update rule
for MDP's is

V(A:+l)(Z) = V(A:)(z) + QA:[r(z, y, 1I"(z» + "YV(A:)(y) - V(A:)(z)], (5)
where QA: is the learning rate. The sequence of value-function estimates generated
by the TD(O) proceedure will converge to the true solution, Vw , with probability
one [5,8, 11] under the appropriate conditions on the QA: and on the definition of the
MDP.

The TD(O) learning rule for SMDP's, intended to solve the system of equations (1)
given a sequence of sampled state transitions, is:

[1 -fJT] V(A:+1)(z) = V(A:)(z) + QA: -; r(z, y, 1I"(z» + e-fJTV(A:)(y) - V(A:)(z) , (6)

where the sampled transition time from state z to state y was T time units,

I_p-tl .. r(z, y, 1I"(z» is the sample reward received in T time units, and e-fJT is the

sample discount on the value of the next state given a transition time of T time
units. The TD(>.) learning rule for SMDP's is straightforward to define from here.

396 Steven Bradtke. Michael 0. Duff

4 Q-Iearning for SMDP's

Denardo [6] and Watkins [12] define Q.f) the Q-function corresponding to the policy
71", as

Q'II"(z, a) = R(z, a) + 'Y 2: PzJ(a)V'II"(Y) (7)

YEX

Notice that a can be any action. It is not necesarily the action 7I"(z) that would be
chosen by policy 71". The function Q. corresponds to the optimal policy. Q'II"(z, a)
represents the total discounted return that can be expected if any action is taken
from state z, and policy 71" is followed thereafter. Equation (7) can be rewritten as

Q'II"(z, a) = R(z, a) + 'Y 2: PZJ(a)Q'II"(Y' 7I"(Y»,
yEX

and Q. satisfies the Bellman-style optimality equation

Q·(z, a) = R(z, a) + 'Y 2: Pzy(a) max Q.(y, a'),
A'EA

JEX

(8)

(9)

Q-Iearning, first described by Watkins [12], uses stochastic approximation to itera­
tively refine an estimate for the function Q •. The Q-Iearning rule is very similar to
TD(O). Upon a sampled transition from state z to state y upon selection of a, with
sampled reward r(z, y, a), the Q-function estimate is updated according to

Q(A:+l)(Z, a) = Q(J:)(z, a) + etJ: [r(z, y, a) + 'Y ~~ Q(J:)(y, a') - Q(J:)(z, a)]. (10)

Q-functions may also be defined for SMDP's. The optimal Q-function for an SMDP
satisfies the equation

2: PZJ(a) roo t e-tJ• p(z, a)dsdFzJ(tla) +
'V 10 10

JE"-

Q·(z, a)

2: Pz1I (a) roo e-tJt max Q.(y, a')dFzJ(tla). (11)
'V 10 A'EA

JE"-

This leads to the following Q-Iearning rule for SMDP's:

Q(A:+l)(Z, a) = Q(J:)(z, a)+etJ: [1 -;-tJ'r' r(z, y, a) + e-tJ'r' ~~ Q(J:)(y, a') _ Q(J:)(z, a)]

(12)

5 RTDP and Adaptive RTDP for SMDP's

The TD(O) and Q-Iearning algorithms are model-free, and rely upon stochastic
approximation for asymptotic convergence to the desired function (V'll" and Q., re­
spectively). Convergence is typically rather slow. Real-Time Dynamic Program­
ming (RTDP) and Adaptive RTDP [1,3] use a system model to speed convergence.

Reinforcement Learning Methods for Continltolts-Time Markov Decision Problems 397

RTDP assumes that a system model is known a priori; Adaptive RTDP builds a
model as it interacts with the system. As discussed by Barto et al. [1], these asyn­
chronous DP algorithms can have computational advantages over traditional DP
algorithms even when a system model is given.

Inspecting equation (4), we see that the model needed by RTDP in the SMDP
domain consists of three parts:

1. the state transition probabilities Pzy(a),

2. the expected reward on transition from state z to state y using action a,
R(z, y, a), and

3. the expected discount factor to be applied to the value of the next state on
transition from state z to state y using action a, 'Y(z, y, a).

If the process dynamics are governed by a continuous time Markov chain, then the
model needed by RTDP can be analytically derived through uniJormization [2]. In
general, however, the model can be very difficult to analytically derive. In these
cases Adaptive RTD P can be used to incrementally build a system model through
direct interaction with the system. One version of the Adaptive RTDP algorithm
for SMDP's is described in Figure 1.

1 Set k = 0, and set Zo to some start state.

2 Initialize P, R, and ~.
3 repeat forever {
4 For all actions a, compute

Q(Ie)(ZIe,a) = L P .. "v(a) [R(zIe,y,a) +~(zIe,y,a)V(Ie)(y)]

veX

5 Perform the update V(le+l)(ZIe) = minoeA Q(Ie)(zIe,a)
6 Select an action, ale.
7 Perform ale and observe the transition to ZIe+l after T time units. Update

P. Use the sample reward 1 __ ;;11'" r(ZIe,Zle+l,ale) and the sample discount

factor e-f3T to update R and ~.
8 k=k+l
9 }

Figure 1: Adaptive RTDP for SMDP's. P, il, and .y are the estimates maintained
by Adaptive RTDP of P, R, and 'Y.

Notice that the action selection procedure (line 6) is left unspecified. Unlike RTDP,
Adaptive RTDP can not always choose the greedy action. This is because it only has
an e8timate of the system model on which to base its decisions, and the estimate
could initially be quite inaccurate. Adaptive RTDP needs to explore, to choose
actions that do not currently appear to be optimal, in order to ensure that the
estimated model converges to the true model over time.

398 Steven Bradtke, Michael O. Duff

6 Experiment: Routing to two heterogeneous servers

Consider the queueing system shown in Figure 2. Arrivals are assumed to be Poisson
with rate).. Upon arrival, a customer must be routed to one of the two queues,
whose servers have service times that are exponentially distributed with parameters
J.l.1 and J.l.2 respectively. The goal is compute a policy that minimizes the objective
function:

e {foOO e-tJt [c1n1(t) + C2n2(t)]dt},

where C1 and C2 are scalar cost factors, and n1(t) and n2(t) denote the number of
customers in the respective queues at time t. The pair (n1(t), n2(t)) is the state of
the system at time t; the state space for this problem is countably infinite. There
are two actions available at every state: if an arrival occurs, route it to queue 1 or
route it to queue 2.

-.<-~
___ -.J~

Figure 2: Routing to two queueing systems.

It is known for this problem (and many like it [7]), that the optimal policy is a
threshold policy; i.e., the set of states Sl for which it is optimal to route to the
first queue is characterized by a monotonically nondecreasing threshold function F
via Sl = {(nl,n2)ln1 $ F(n2)}' For the case where C1 = C2 = 1 and J.l.1 = J.l.2,
the policy is simply to join the shortest queue, and the theshold function is a line
slicing diagnonally through the state space.

We applied the SMDP version of Q-Iearning to this problem in an attempt to find
the optimal policy for some subset of the state space. The system parameters were
set to). = J.l.1 = J.l.2 = 1, /3 = 0.1, and C1 = C2 = 1. We used a feedforward neural
network trained using backpropagation as a function approximator.

Q-Iearning must take exploratory actions in order to adequately sample all of the
available state transitions. At each decision time k, we selected the action aA: to be
applied to state ZA: via the Boltzmann distribution

where TA: is the "computational temperature." The temperature is initialized to a
relatively high value, resulting in a uniform distribution for prospective actions. TA:
is gradually lowered as computation proceeds, raising the probability of selecting
actions with lower (and for this application, better) Q-values. In the limit, the action
that is greedy with respect to the Q-function estimate is selected. The temperature
and the learning rate erA: are decreased over time using a "search then converge"
method [4].

Reinforcement Learning Methods for Continuous-Time Markov Decision Problems 399

Figure 3 shows the results obtained by Q-Iearning for this problem. Each square
denotes a state visited, with nl(t) running along the z-axis, and n2(t) along the y­
axis. The color of each square represents the probability of choosing action 1 (route
arrivals to queue 1). Black represents probability 1, white represents probability o.
An optimal policy would be black above the diagonal, white below the diagonal,
and could have arbitrary colors along the diagonal.

== == == == = == =

II • II • ..
!m il lUll @@ ~d r2

it • •• E M m@ mi· 1 @
w • •• ... moo mllw
•••••• ,.m @ll

A

== ;;= == == = == =

• .. III
~2 @ %@Ii

•• •• Ell =11111
m • . ' . •• IIIIJIIIII

•••••••• @w liliiii w ••••••••
@m ••••••••• '.

B

II

• •

;;=
;;;;;;

== == = == =

l1li 0
@oo mm

oow mw m]lw
•• mill lUll lM]lm

•••••••• lIlIg!W
=wjin i ••••••••••

I'm
II ... '.' '. c

Figure 3: Results of the Q-Iearning experiment. Panel A represents the policy after
50,000 total updates, Panel B represents the policy after 100,000 total updates, and
Panel C represents the policy after 150,000 total updates.

One unsatisfactory feature of the algorithm's performance is that convergence is
rather slow, though the schedules governing the decrease of Boltzmann temperature
TA: and learning rate 0A: involve design parameters whose tweakings may result in
faster convergence. If it is known that the optimal policies are of theshold type,
or that some other structural property holds, then it may be of extreme practical
utility to make use of this fact by constraining the value-functions in some way or
perhaps by representing them as a combination of appropriate basis vectors that
implicity realize or enforce the given structural property.

7 Discussion

In this paper we have proposed extending the applicability of well-known reinforce­
ment learning methods developed for discrete-time MDP's to the continuous time
domain. We derived semi-Markov versions of TD(O), Q-Iearning, RTDP, and Adap­
tive RTDP in a straightforward way from their discrete-time analogues. While we
have not given any convergence proofs for these new algorithms, such proofs should
not be difficult to obtain if we limit ourselves to problems with finite state spaces.
(Proof of convergence for these new algorithms is complicated by the fact that, in
general, the state spaces involved are infinite; convergence proofs for traditional
reinforcement learning methods assume the state space is finite.) Ongoing work
is directed toward applying these techniques to more complicated systems, exam­
ining distributed control issues, and investigating methods for incorporating prior

400 Steven Bradtke, Michael 0. Duff

knowledge (such as structured function approximators).

Acknowledgements

Thanks to Professor Andrew Barto, Bob Crites, and to the members of the Adaptive
Networks Laboratory. This work was supported by the National Science Foundation
under Grant ECS-9214866 to Professor Barto.

References

[1] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence. Accepted.

[2] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice Hall, Englewood Cliffs, NJ, 1987.

[3] S. J. Bradtke. Incremental Dynamic Programming for On-line Adaptive Opti­
mal Control. PhD thesis, University of Massachusetts, 1994.

[4] C. Darken, J. Chang, and J. Moody. Learning rate schedules for faster stochas­
tic gradient search. In Neural Networks for Signal Processing ~ - Proceedings
of the 199~ IEEE Workshop. IEEE Press, 1992.

[5] P. Dayan and T. J. Sejnowski. Td(A): Convergence with probability 1. Machine
Learning, 1994.

[6] E. V. Denardo. Contraction mappings in the theory underlying dynamic pro­
gramming. SIAM Review, 9(2):165-177, April 1967.

[7] B. Hajek. Optimal control of two interacting service stations. IEEE-TAC,
29:491-499, 1984.

[8] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic
iterative dynamic programming algorithms. Neural Computation, 1994.

[9] S. M. Ross. Applied Probability Models with Optimization Applications. Holden­
Day, San Francisco, 1970.

[10] R. S. Sutton. Learning to predict by the method of temporal differences.
Machine Learning, 3:9-44, 1988.

[11] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-Iearning. Tech­
nical Report LIDS-P-2172, Laboratory for Information and Decision Systems,
MIT, Cambridge, MA, 1993.

[12] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, England, 1989.

