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Abstract 

In this paper, we incorporate the Hierarchical Mixtures of Experts (HME) 
method of probability estimation, developed by Jordan [1], into an HMM­
based continuous speech recognition system. The resulting system can be 
thought of as a continuous-density HMM system, but instead of using gaussian 
mixtures, the HME system employs a large set of hierarchically organized but 
relatively small neural networks to perform the probability density estimation. 
The hierarchical structure is reminiscent of a decision tree except for two 
important differences: each "expert" or neural net performs a "soft" decision 
rather than a hard decision, and, unlike ordinary decision trees, the parameters 
of all the neural nets in the HME are automatically trainable using the EM 
algorithm. We report results on the ARPA 5,OOO-word and 4O,OOO-word Wall 
Street Journal corpus using HME models. 

1 Introduction 

Recent research has shown that a continuous-density HMM (CD-HMM) system can out­
perform a more constrained tied-mixture HMM system for large-vocabulary continuous 
speech recognition (CSR) when a large amount of training data is available [2]. In other 
work, the utility of decision trees has been demonstrated in classification problems by 
using the "divide and conquer" paradigm effectively, where a problem is divided into a 
hierarchical set of simpler problems. We present here a new CD-HMM system which 
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has similar properties and possesses the same advantages as decision trees, but has the 
additional important advantage of having automatically trainable "soft" decision bound­
aries. 

2 Hierarchical Mixtures of Experts 

The method of Hierarchical Mixtures of Experts (HME) developed recently by Jordan 
[1] breaks a large scale task into many small ones by partitioning the input space into 
a nested set of regions, then building a simple but specific model (local expert) in each 
region. The idea behind this method follows the principle of divide-and-conquer which 
has been utilized in certain approaches to classification problems, such as decision trees. 
In the decision tree approach, at each level of the tree, the data are divided explicitly into 
regions. In contrast, the HME model makes use of "soft" splits of the data, i.e., instead of 
the data being explicitly divided into regions, the data may lie simultaneously in multiple 
regions with certain probabilities. Therefore, the variance-increasing effect of lopping off 
distant data in the decision tree can be ameliorated. Furthermore, the "hard" boundaries 
in the decision tree are fixed once a decision is made, while the "soft" boundaries in 
the HME are parameterized with generalized sigmoidal functions, which can be adjusted 
automatically using the Expectation-Maximization (EM) algorithm during the splitting. 

Now we describe how to apply the HME methodology to the CSR problem. For each 
state of a phonetic HMM, a separate HME is used to estimate the likelihood. The actual 
HME first computes a posterior probability P(llz, s), the probability of phoneme class 
I, given the input feature vector z and state s. That probability is then divided by the a 
priori probability of the phone class I at state s. A one-level HME performs the following 
computation: 

c 
P(llz, s) = L P(llci, z, s)P(cilz, s) (1) 

i=l 

where I = 1, , .. , L indicates phoneme class, Ci represents a local region in the input space, 
and C is the number of regions. P(cilz, s) can be viewed as a gating network, while 
P(lICi, z, s) can be viewed as a local expert classifier (expert network) in the region c, 
[1]. In a two-level HME, each region Ci is divided in turn into C subregions. The term 
P(IICi, z, s) is then computed in a similar manner to equation (1), and so on. If in some 
of these subregions there are no data available, we back off to the parent network. 

3 TECHNICAL DETAILS 

As in Jordan's paper, we use a generalized sigmoidal function to parameterize P(cilz) 
as follows: 

(2) 

where z can be the direct input (in a one-layer neural net) or the hidden layer vector (in a 
two-layer neural net), and v,, i = 1, .. " C are weights which need to train. Similarly, the 
local phoneme classifier in region Ci, P(llc" z), can be parameterized with a generalized 
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sigmoidal function also: 

(3) 

where 8;i,j = 1, ... , L are weights. The whole system consists of two set of parameters: 
Vi, i = 1, ... , C and 8;i' j = 1, ... , L, e = {8;i' Vi}. All parameters are estimated by using 
the EM algorithm. 

The EM is an iterative approach to maximum likelihood estimation. Each iteration of an 
EM algorithm is composed of two steps: an Expectation (E) step and a Maximization 
(M) step. The M step involves the maximization of a likelihood function that is redefined 
in each iteration by the E step. Using the parameterizations in (2) and (3), we obtain the 
following iterative procedure for computing parameters e = {Vi, 8;i}: 
1 . .. I' (0) d 8(0) f . I C ' 1 L . lDltIa lze Vi an ;i or 1. = , ... , ,} = , ... , . 
2. E-step: In each iteration n, for each data pair (z(t), l(t», t = 1, ... ,N, compute 

zi(tin) = P(cilz(t), l(t), e(n~ 

= 
P(Ci Iz(t), v~n»p(l(t)lci' z(t), 8~~~,i) 

(4) 

where i = 1, ... , C. Zi(t)<n) represents the probability of the data t lying in the region 
i, given the current parameter estimation e(n). It will be used as a weight for this data 
in the region i in the M-step. The idea of "soft" splitting reflects that these weights are 
probabilities between 0 and 1, instead of a "hard"decision 0 or 1. 
3. M-step: 

(5) 

(6) 

4. Iterate until 8;i' Vi converge. 

The first maximization means fitting a generalized sigmoidal model (3) using the labeled 
data (z(t), l(t» and weighting Zi(t)<n). The second one means fitting a generalized sig­
moidal model (2) using inputs z(t) and outputs Zi(t)<n). The criterion for fitting is the 
cross-entropy. Typically, the fitting can be solved by the Newton-Raphson method. How­
ever, it is quite expensive. Viewing this type of fitting as a multi-class classification task, 
we developed a technique to invert a generalized sigmoidal function more efficiently, 
which will be described in the following. 

A common method in a multi-class classification is to divide the problem into many 
2-c1ass classifications. However, this method results in a positive and negative training 
unbalance usually. To avoid the positive and negative training unbalance, the following 
technique can be used to solve multi-class posterior probabilities simultaneously. 

Suppose we have a labeled data set, (z(t), l(t», t = 1, ... , N, where l(t) E {I, ... , L} is 
the label for t-th data. We use a generalized sigmoidal function to model the posterior 
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probability P(llz), where 1 = I, ... , L as follows: 

e9'f'z 
P,(z) = P(llz) = 9T L:k e "z 

Obviously, since these probabilities sum up to one, we have 
L-I 

PL(Z) = 1 - L P,(z). 

'=1 
Now, a training sample z(t) with a class label let) can be interpreted as: 

{ 0.9 1 = let) 
P,(z(t» = 1:':1 1 =/l(t) 

If we define 
T P,(z) 

9, z = log PL(z) 

equation (10) implies that 

(7) 

(8) 

(9) 

(10) 

(11) 

for 1 = I, ... , L with 9Lz = O. This expression is the generalized sigmoidal function in 
(7). This means, we can train parameters in (7) to satisfy Equation (10) from the data. 
Using a least squares criterion, the objective is 

. ,,[ P'(Z(t»] 2 mm L..J 9T z(t) - log ---
t PL(Z(t» 

for 1 = I, ... , L - 1. Denote a data matrix as 

x= 

A least squares solution to (12) is 

z(l) 
z(2) 

zeN) 

9, = (loga)(XT X)-I [L z(t) - L Z(t)] 
'(t)=l '(t)=L 

for 1 = I, ... , L, where a = 9(L - 1). Substituting (13) into (11), we get 
ZT(XT X)-l ~ z(t) 

(12) 

(13) 

a L.JI(I~I 

P,(z) = zT(XT X)-l L: z(t) (14) L:k a 1(1)=" 

Equation (13) and (14) are very easy to compute. Basically, we only have to accumulate 
the matrix XT X and sum z(t) into different classes 1 = I, ... , L. We can obtain prob­
abilities P,(z) by a single inversion of matrix XT X after a pass through the training 
data. 
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4 Relation to Other Work 

The work reported here is very different from our previous work utilizing neural nets 
for CSR. There, a single segmental neural network (SNN) is used to model a complete 
phonetic segment [3]. Here, each HME estimates the probability density for each state 
of a phonetic HMM. The work here is more similar to that by Cohen et al. [4], the major 
difference being that in [4], a single very large neural net is used to perform the probability 
density modeling. The training of such a large network requires the use of a specialized 
parallel processing machine, so that the training can be done in a reasonable amount of 
time. By using the HME method and dividing the problem into many smaller problems, 
we are able to perform the needed training computation on regular workstations. 

Most of the previous work on CD-HMM work has utilized mixtures of gaussians to 
estimate the probability densities of an HMM. Since a ' multilayer feedforward neural 
network is a universal continuous function approximator, we decided to explore the use 
of neural nets as an alternative approach for continuous density estimation. 

5 Experimental Results 

Word Error Rate 
HMM 7.8 
SNN 8.5 
HMM+SNN 7.1 
HME 7.6 
HME+HMM 6.8 
Prior-modified HME + HMM 6.2 

Table 1: Error Rates for the ARPA WSJ 5K Development Test, Trigram Grammar 

Word Error Rate 
HMM 9.5 
HME+ HMM 8.7 

Table 2: Error Rates for the ARPA WSJ 40K Test Set, Trigram Grammar 

In our initial application of the HME method to large-vocabulary CSR, we used phonetic 
context-independent HMEs to estimate the likelihoods at each state of 5-state HMMs. 
We implemented a two-level HME, with the input space divided into 46 regions, and 
each of those regions is further divided into 46 subregions. The initial divisions were 
accomplished by supervised training, with each division trained to one of the 46 phonemes 
in the system. All gating and local expert networks in the HME had identical structures 
- a two-layer generalized sigmoidal network. The whole HME system was implemented 
within an N-best paradigm [3], where the recognized sequence was obtained as a result 
of a rescoring of an N-best list obtained from our baseline BYBLOS system (tied-mixture 
HMM) with a statistical trigram grammar. 
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We then built a context-dependent HME system based on the structure of the context­
independent HME models described above. For each state, the whole training data was 
divided into 46 parts according to its left or right context. Then for each context, a 
separate HME model was built for that context. To be computationally feasible, we used 
only one-level HMEs here. We first experimented using a left-context and right-context 
model. 

We tested the HME implementation on the ARPA 5,OOO-word Wall Street Journal corpus 
(WSJl, H2 dev set). We report the word error rates on the same test set for a number of 
different systems. Table 1 shows the word error rates for i) the baseline HMM system; 
ii) the segment-based neural net system (SNN) iii) the hybrid SNNIHMM system iv) a 
HME system alone. v) a HME system combined with HMM; vi) a HME +HMM system 
with modified priors. 

From Table 1, The performance of the baseline tied-mixture HMM is 7.8%. The per­
formance of the SNN system (8.5%) is comparable to the HMM alone. We see that the 
performance of a HME (7.6%) is as good as the HMM system, which is better than the 
SNN system. When combined with the baseline HMM system, the HME and SNN both 
improve performance over the HMM alone about 10% from 7.8% to 6.8% and from 7.8% 
to 7.1% respectively. We found out that the improvement could be made larger for a hy­
brid HMElHMM by adjusting the context-dependent priors with the context-independent 
priors, and then smooth context-dependent models with a context-independent model. 

More specifically, in a context-dependent HME model, we usually estimate the posterior 
probability phoneme I, P(llc, z, s), given left or right context c and the acoustic input 
z in a particular state s. Because the samples may be sparse for many of context 
models, it is necessary to regularize (smooth) context-dependent models with a context­
independent model, where there is much more data available. However, since the two 
models have different priors: P(llc, s) in a context-dependent model and P(lls) in a 
context-independent model, a simple interpolation between the two models which is 
P(ll ) P(x , c,.)P(' c.) . d d od I d P(ll ) P(x , .)P(' .) c, z, s = P(x c,.) 10 a context- epen ent mean z, s = P(x .) 

in a context-independent model is inconsistent. To scale the context-dependent priors 
P(llc, s) with a context-independent prior P(lls), we weighted each input data point z 

with the weight :c.i'c:;) for a prior adjusting. After this modification, a context-dependent 

HME actually estimates P(z ~~:~('I'). It combines better with a context-independent 
model. For the same experiment we showed in Table 1, the word error for the HME 
(with HMM) droped from 6.8% to 6.2% when priors were modified. For this 5,OOO-word 
development set, we got a total of about 20% word error reduction over the tied-mixture 
HMM system using a HME-based neural network system. 

We then switched our experiment domain from a 5,OOO-word to 40,OOO-word the test 
set. During this year, the BYBLOS system has been improVed from a tied-mixture 
system to a continuous density system. We also switched to using this new continuous 
density BYBLOS in our hybrid HMElHMM system. The language model used here was 
a 40,OOO-word trigram grammar. The result is shown in Table 2. 

From Table 2, we see that there is about a 10% word error rate reduction over the contin­
uous density HMM system by combining a context-dependent HME system. Compared 
with the 20% improvement over the tied-mixture system we made for the 5,OOO-word de­
velopment set, the improvement over the continuous density system in this 40,OOO-word 
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development is less. This may be due to the big improvement of the HMM system itself. 

6 CONCLUSIONS 

The method of hierarchical mixtures of experts can be used as a continous density es­
timator to speech recognition. Experimental results showed that estimations from this 
approach are consistent with the estimations from the HMM system. The frame-based 
neural net system using hierarchical mixtures of experts improves the performance of 
both the state-of-the-art tied mixture HMM system and the continuous density HMM 
system. The HME system itself has the same performance as the state-of-the-art tied 
mixture HME system. 
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