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Abstract 

The theory of Optimal Unsupervised Motor Learning shows how 
a network can discover a reduced-order controller for an unknown 
nonlinear system by representing only the most significant modes. 
Here, I extend the theory to apply to command sequences, so that 
the most significant components discovered by the network corre­
spond to motion "primitives". Combinations of these primitives 
can be used to produce a wide variety of different movements. 
I demonstrate applications to human handwriting decomposition 
and synthesis, as well as to the analysis of electrophysiological 
experiments on movements resulting from stimulation of the frog 
spinal cord. 

1 INTRODUCTION 

There is much debate within the neuroscience community concerning the inter­
nal representation of movement, and current neurophysiological investigations are 
aimed at uncovering these representations. In this paper, I propose a different 
approach that attempts to define the optimal internal representation in terms of 
"movement primitives" , and I compare this representation with the observed behav­
ior. In this way, we can make strong predictions about internal signal processing. 
Deviations from the predictions can indicate biological constraints or alternative 
goals that cause the biological system to be suboptimal. 

The concept of a motion primitive is not as well defined as that of a sensory primitive 
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Figure 1: Unsupervised Motor Learning: The plant P takes inputs u and produces 
outputs y. The sensory map C produces intermediate variables z, which are mapped 
onto the correct command inputs by the motor network N. 

within the visual system, for example. There is no direct equivalent to the "receptive 
field" concept that has allowed interpretation of sensory recordings. In this paper, I 
will propose an internal model that involves both motor receptive fields and a set of 
movement primitives which are combined using a weighted sum to produce a large 
class of movements. In this way, a small number of well-designed primitives can 
generate the full range of desired behaviors. 

I have previously developed the concept of "optimal unsupervised motor learning" 
to investigate optimal internal representations for instantaneous motor commands. 
The optimal representations adaptively discover a reduced-order linearizing con­
troller for an unknown nonlinear plant. The theorems give the optimal solution in 
general, and can be applied to special cases for which both linear and nonlinear 
adaptive algorithms exist (Sanger 1994b). In order to apply the theory to com­
plete movements it needs to be extended slightly, since in general movements exist 
within an infinite-dimensional task space rather than a finite-dimensional control 
space. The goal is to derive a small number of primitives that optimally encode 
the full set of observed movements. Generation of the internal movement primi­
tives then becomes a data-compression problem, and I will choose primitives that 
minimize the resultant mean-squared error. 

2 OPTIMAL UNSUPERVISED MOTOR LEARNING 

Optimal Unsupervised Motor Learning is based on three principles: 

1. Dimensionality Reduction 

2. Accurate Reduced-order Control 

3. Minimum Sensory error 

Consider the system shown in figure 1. At time t, the plant P takes motor inputs u 
and produces sensory outputs y. A sensory mapping C transforms the raw sensory 
data y to an intermediate representation z. A motor mapping takes desired values 
of z and computes the appropriate command u such that CPu = z. Note that the 
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loop in the figure is not a feedback-control loop, but is intended to indicate the flow 
of information. With this diagram in mind, we can write the three principles as: 

1. dim[z] < dim[y] 

2. GPNz=z 

3. IIPNGy - yll is minimized 

We can prove the following theorems (Sanger 1994b): 

Theorem 1: For all G there exists an N such that G P N z = z. If G is linear and 
p- 1 is linear, then N is linear. 

Theorem 2: For any G, define an invertible map C such that GC-l =_1 on range[G]. 
Then liP NGy - yll is minimized when G is chosen such that Ily - G-1GII is mini­
mized. If G and P are linear and the singular value decomposition of P is given by 
LT SR, then the optimal maps are G = Land N = RT S-I. 

For the discussion of movement, the linear case will be the most important since in 
the nonlinear case we can use unsupervised motor learning to perform dimensional­
ity reduction and linearization of the plant at each time t. The movement problem 
then becomes an infinite-dimensional linear problem. 

Previously, I have developed two iterative algorithms for computing the singular 
value decomposition from input/output samples (Sanger 1994a). The algorithms are 
called the "Double Generalized Hebbian Algorithm" (DGHA) and the "Orthogonal 
Asymmetric Encoder" (OAE). DGHA is given by 

8G 'Y(zyT - LT[zzT]G) 

8NT 'Y(zuT - LT[zzT]NT ) 

while OAE is described by: 

'Y(iyT - LT[ZiT]G) 

'Y(Gy - LT[GGT]z)uT 

where LT[ ] is an operator that sets the above diagonal elements of its matrix 
argument to zero, y = Pu, z = Gy, z = NT u, and 'Y is a learning rate constant. 
Both algorithms cause G to converge to the matrix of left singular vectors of P, and 
N to converge to the matrix of right singular vectors of P (multiplied by a diagonal 
matrix for DGHA) . DGHA is used in the examples below. 

3 MOVEMENT 

In order to extend the above discussion to allow adaptive discovery of movement 
primitives, we now consider the plant P to be a mapping from command sequences 
u(t) to sensory sequences y(t). We will assume that the plant has been feedback 
linearized (perhaps by unsupervised motor learning). We also assume that the 
sensory network G is constrained to be linear. In this case, the optimal motor 
network N will also be linear. The intermediate variables z will be represented by 
a vector. The sensory mapping consists of a set of sensory "receptive fields" gi(t) 
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Figure 2: Extension of unsupervised motor learning to the case of trajectories . 
Plant input and output are time-sequences u(t) and y(t). The sensory and motor 
maps now consist of sensory primitives gi(t) and motor primitives ni(t). 

such that 

Zi = J gj(t)y(t)dt =< gily > 

and the motor mapping consists of a set of "motor primitives" ni(t) such that 

u(t) = L ni(t)zi 
i 

as in figure 2. If the plant is equal to the identity (complete feedback linearization), 
then gi(t) = ni(t). In this case, the optimal sensory-motor primitives are given by 
the eigenfunctions of the autocorrelation function of y(t) . If the autocorrelation is 
stationary, then the infinite-window eigenfunctions will be sinusoids. Note that the 
optimal primitives depend both on the plant P as well as the statistical distribution 
of outputs y(t). 

In practice, both u(t) and y(t) are sampled at discrete time-points {tic} over a finite 
time-window, so that the plant input and output is in actuality a long vector. Since 
the plant is linear, the optimal solution is given by the singular value decomposition, 
and either the DGHA or OAE algorithms can be used directly. The resulting sensory 
primitives map the sensory information y(t) onto the finite-dimensional z, which 
is usually a significant data compression. The motor primitives map Z onto the 
sequence u(t), and the resulting y(t) = P[u(t)] will be a linear projection of y(t) 
onto the space spanned by the set {Pni(t)}. 

4 EXAMPLE 1: HANDWRITING 

As a simple illustration, I examine the case of human handwriting. We can consider 
the plant to be the identity mapping from pen position to pen position, and the 
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Figure 3: Movement primitives for sampled human handwriting. 
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human to be taking desired sensory values of pen position and converting them 
into motor commands to move the pen. The sensory statistics then reflect the 
set of trajectories used in producing handwritten letters . An optimal reduced-order 
control system can be designed based on the observed statistics, and its performance 
can be compared to human performance. 

For this example, I chose sampled data from 87 different examples of lower-case 
letters written by a single person, and represented as horizontal and vertical pen 
position at each point in time. Blocks of 128 sequential points were used for training, 
and 8 internal variables Zi were used for each of the two components of pen position. 
The training set consisted of 5000 randomly chosen samples. Since the plant is the 
identity, the sensory and motor primitives are the same, and these are shown as 
"strokes" in figure 3. Linear combinations of these strokes can be used to generate 
pen paths for drawing lowercase letters. This is shown in figure 4, where the word 
"hello" (not present in the training set) is written and projected using increasing 
numbers of intermediate variables Zi. The bottom of figure 4 shows the sequence of 
values of Zi that was used (horizontal component only). 

Good reproduction of the test word was achieved with 5 movement primitives. 
A total of 7 128-point segments was projected , and these were recombined using 
smooth 50% overlap . Each segment was encoded by 5 coefficients for each of the 
horizontal and vertical components, giving a total of 70 coefficients to represent 
1792 data points (896 horizontal and vertical components) , for a compression ratio 
of 25 :1. 

5 EXAMPLE 2: FROG SPINAL CORD 

The second example models some interesting and unexplained neurophysiological 
results from microstimulation of the frog spinal cord. (Bizzi et al. 1991) measured 
the pattern of forces produced by the frog hindlimb at various positions in the 
workspace during stimulation of spinal interneurons. The resulting force-fields often 
have a stable" equilibrium point" , and in some cases this equilibrium point follows 
a smooth closed trajectory during tonic stimulation of the interneuron. However, 
only a small number of different force field shapes have been found, and an even 
smaller number of different trajectory types . A hypothesis to explain this result 
is that larger classes of different trajectories can be formed by combining the pat­
terns produced by these cells. This hypothesis can be modelled using the optimal 
movement primitives described above. 

Figure 5a shows a simulation of the frog leg. To train the network, random smooth 
planar movements were made for 5000 time points. The plant output was considered 
to be 32 successive cartesian endpoint positions , and the plant input was the time­
varying force vector field. Two hidden units Z were used . In figure 5b we see an 
example of the two equilibrium point trajectories (movement primitives) that were 
learned by DG HA. Linear combinations of these trajectories account for over 96% of 
the variance of the training data, and they can approximate a large class of smooth 
movements . Note that many other pairs of orthogonal trajectories can accomplish 
this, and different trials often produced different orthogonal trajectory shapes. 
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Figure 4: Projection of test-word "hello" using increasing numbers of intermediate 
variables Zi. 
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Figure 5: a. Simulation of frog leg configuration. b. An example of learned optimal 
movement primitives. 

6 CONCLUSION 

The examples are not meant to provide detailed models of internal processing for 
human or frog motor control. Rather, they are intended to illustrate the concept 
of optimal primitives and perhaps guide the search for neurophysiological and psy­
chophysical correlates of these primitives. The first example shows that generation 
of the lower-case alphabet can be accomplished with approximately 10 coefficients 
per letter, and that this covers a considerable range of variability in character pro­
duction . The second example demonstrates that an adaptive algorithm allows the 
possibility for the frog spinal cord to control movement using a very small number 
of internal variables. 

Optimal unsupervised motor learning thus provides a descriptive model for the 
generation of a large class of movements using a compressed internal description. A 
set of fixed movement primitives can be combined linearly to produce the necessary 
motor commands, and the optimal choice of these primitives assures that the error 
in the resulting movement will be minimized. 
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