
Advantage Updating Applied to
a Differential Game

Mance E. Harmon
Wright Laboratory

WL/AAAT Bldg. 635 2185 Avionics Circle
Wright-Patterson Air Force Base, OH 45433-7301

harmonme@aa.wpafb.mil

A. Harry Klopr
Wright Laboratory

klopfah@aa.wpafb.mil

Leemon C. Baird III·
Wright Laboratory

baird@cs.usafa.af.mil

Category: Control, Navigation, and Planning
Keywords: Reinforcement Learning, Advantage Updating,

Dynamic Programming, Differential Games

Abstract

An application of reinforcement learning to a linear-quadratic, differential
game is presented. The reinforcement learning system uses a recently
developed algorithm, the residual gradient form of advantage updating.
The game is a Markov Decision Process (MDP) with continuous time,
states, and actions, linear dynamics, and a quadratic cost function. The
game consists of two players, a missile and a plane; the missile pursues
the plane and the plane evades the missile. The reinforcement learning
algorithm for optimal control is modified for differential games in order to
find the minimax point, rather than the maximum. Simulation results are
compared to the optimal solution, demonstrating that the simulated
reinforcement learning system converges to the optimal answer. The
performance of both the residual gradient and non-residual gradient forms
of advantage updating and Q-learning are compared. The results show that
advantage updating converges faster than Q-learning in all simulations.
The results also show advantage updating converges regardless of the time
step duration; Q-learning is unable to converge as the time step duration
~rows small.

U.S .A.F. Academy, 2354 Fairchild Dr. Suite 6K4l, USAFA, CO 80840-6234

354 Mance E. Hannon, Leemon C. Baird ll/, A. Harry Klopf

1 ADVANTAGE UPDATING

The advantage updating algorithm (Baird, 1993) is a reinforcement learning algorithm in
which two types of information are stored. For each state x, the value V(x) is stored,
representing an estimate of the total discounted return expected when starting in state x
and performing optimal actions. For each state x and action u, the advantage, A(x,u), is
stored, representing an estimate of the degree to which the expected total discounted
reinforcement is increased by performing action u rather than the action currently
considered best. The optimal value function V* (x) represents the true value of each state.
The optimal advantage function A * (x,u) will be zero if u is the optimal action (because u
confers no advantage relative to itself) and A * (x,u) will be negative for any suboptimal u
(because a suboptimal action has a negative advantage relative to the best action). The
optimal advantage function A * can be defined in terms of the optimal value function v*:

A*(x,u) = ~[RN(X,U)-V*(x)+ rNV*(x')]
bat

(1)

The definition of an advantage includes a l/flt term to ensure that, for small time step
duration flt, the advantages will not all go to zero.

Both the value function and the advantage function are needed during learning, but after
convergence to optimality, the policy can be extracted from the advantage function alone.
The optimal policy for state x is any u that maximizes A * (x,u). The notation

~ax (x) = max A(x,u)
"

(2)

defines Amax(x). If Amax converges to zero in every state, the advantage function is said
to be normalized. Advantage updating has been shown to learn faster than Q-Iearning
(Watkins, 1989), especially for continuous-time problems (Baird, 1993).

If advantage updating (Baird, 1993) is used to control a deterministic system, there are two
equations that are the equivalent of the Bellman equation in value iteration (Bertsekas,
1987). These are a pair of two simultaneous equations (Baird, 1993):

A(x,u)-maxA(x,u') =(R+ y l1lV(x')- V(X»)_l
w ~t

(3)

maxA(x,u)=O (4)
"

where a time step is of duration L1t, and performing action u in state x results in a
reinforcement of R and a transition to state Xt+flt. The optimal advantage and value
functions will satisfy these equations. For a given A and V function, the Bellman
residual errors, E, as used in Williams and Baird (1993) and defined here as equations (5)
and (6).are the degrees to which the two equations are not satisfied:

E1 (xl,u) = (R(x"u)+ y l1lV(xt+l1I)- V(XI»)~- A(x"u)+ max A(x,,u') (5)
~t w

E2 (x,u)=-maxA(x,u) (6)
"

Advantage Updating Applied to a Differential Game 355

2 RESIDUAL GRADIENT ALGORITHMS

Dynamic programming algorithms can be guaranteed to converge to optimality when used
with look-up tables, yet be completely unstable when combined with function­
approximation systems (Baird & Harmon, In preparation). It is possible to derive an
algorithm that has guaranteed convergence for a quadratic function approximation system
(Bradtke, 1993), but that algorithm is specific to quadratic systems. One solution to this
problem is to derive a learning algorithm to perfonn gradient descent on the mean squared
Bellman residuals given in (5) and (6). This is called the residual gradient form of an
algorithm.

There are two Bellman residuals, (5) and (6), so the residual gradient algorithm must
perfonn gradient descent on the sum of the two squared Bellman residuals. It has been
found to be useful to combine reinforcement learning algorithms with function
approximation systems (Tesauro, 1990 & 1992). If function approximation systems are
used for the advantage and value functions, and if the function approximation systems are
parameterized by a set of adjustable weights, and if the system being controlled is
deterministic, then, for incremental learning, a given weight W in the function­
approximation system could be changed according to equation (7) on each time step:

dW = _ a a[E;(x"u,) + E;(x"u,)]
2 aw

_ _ E () aE1 (x, ,u,) _ E () aE2 (x" u,)
- a 1 x"u, aw a 2 x"u, aw

= _a(_l (R + yMV(X'+M) - V (x)) - A(x"u,) + max A(X"U))
dt u

_(_I (yfJJ aV(x,+fJJ) _ av(x,))_ aA(x"u,) + am~XA(xt'U)J
dt aw aw aw aw

(7)

amaxA(x"u)
-amaxA(x"u) U a

U W
As a simple, gradient-descent algorithm, equation (7) is guaranteed to converge to the
correct answer for a deterministic system, in the same sense that backpropagation
(Rumelhart, Hinton, Williams, 1986) is guaranteed to converge. However, if the system
is nondetenninistic, then it is necessary to independently generate two different possible
"next states" Xt+L1t for a given action Ut perfonned in a given state Xt. One Xt+L1t must

be used to evaluate V(Xt+L1t), and the other must be used to evaluate %w V(xt+fJJ)'

This ensures that the weight change is an unbiased estimator of the true Bellman-residual
gradient, but requires a system such as in Dyna (Sutton, 1990) to generate the second
Xt+L1t. The differential game in this paper was detenninistic, so this was not needed here.

356 Mance E. Harmon, Leemon C. Baird /11, A. Harry KLopf

3 THE SIMULATION

3.1 GAME DEFINITION

We employed a linear-quadratic, differential game (Isaacs, 1965) for comparing Q-learning
to advantage updating, and for comparing the algorithms in their residual gradient forms.
The game has two players, a missile and a plane, as in games described by Rajan, Prasad,
and Rao (1980) and Millington (1991). The state x is a vector (xm,xp) composed of the
state of the missile and the state of the plane, each of which are composed of the poSition
and velocity of the player in two-dimensional space. The action u is a vector (um,up)
composed of the action performed by the missile and the action performed by the plane,
each of which are the acceleration of the player in two-dimensional space. The dynamics
of the system are linear; the next state xt+ 1 is a linear function of the current state Xl and
action Ul. The reinforcement function R is a quadratic function of the accelerations and
the distance between the players.

R(x,u)= [distance2 + (missile acceleration)2 - 2(plane acceleration)2]6t (8)

R(X,U)=[(Xm -Xp)2 +U~-2U!]llt (9)

In equation (9), squaring a vector is equivalent to taking the dot product of the vector with
itself. The missile seeks to minimize the reinforcement, and the plane seeks to maximize
reinforcement. The plane receives twice as much punishment for acceleration as does the
missile, thus allowing the missile to accelerate twice as easily as the plane.

The value function V is a quadratic function of the state. In equation (10), Dm and Dp
are weight matrices that change during learning.

(10)

The advantage function A is a quadratic function of the state X and action u. The actions
are accelerations of the missile and plane in two dimensions.

A(x,u)=x~Amxm +x~BmCmum +u~Cmum +

x~Apxp +x~BpCpup +u~Cpup
(11)

The matrices A, B, and C are the adjustable weights that change during learning.
Equation (11) is the sum of two general quadratic functions. This would still be true if
the second and fifth terms were xBu instead of xBCu. The latter form was used to
simplify the calculation of the policy. Using the xBu form, the gradient is zero when
u=-C-lBx!2. Using the xBCu form, the gradient of A(x,u) with respect to u is zero
when u=-Bx!2, which avoids the need to invert a matrix while calculating the policy.

3.2 THE BELLMAN RESIDUAL AND UPDATE EQUATIONS

Equations (5) and (6) define the Bellman residuals when maximizing the total discounted
reinforcement for an optimal control problem; equations (12) and (13) modify the
algorithm to solve differential games rather than optimal control problems.

Advantage Updating Applied to a Differential Game 357

E1(x"u,) = (R(x"u,)+ r6tV(xl+6t)- V(X,»)..!...- A(x"u,)+ minimax A(x,) (12)
tl.t

E2(x"u,)=-minimax A(x,) (13)

The resulting weight update equation is:

tl.W = -aU R+ r 6tV(X'M')- V(x,») 1t - A(x"u,)+minimax A(X,»)

.((rt:., aV~6t) aV(X,»)_1 _ aA(x"u,) + aminimax A(X,»)
aW tl.t aw aw (14)

" A() aminimax A(x,)
-amzmmax x, aw

For Q-leaming, the residual-gradient form of the weight update equation is:

tl.W = -a(R+ r 6t minimax Q(Xl+dt)-Q(x"u,»)

.(r 6t -kminimax Q(x,+6t)--kQ(x"u,»)

4 RESULTS

4.1 RESIDUAL GRADIENT ADVANTAGE UPDATING RESULTS

(15)

The optimal weight matrices A * , B *, C *, and D * were calculated numerically with
Mathematica for comparison. The residual gradient form of advantage updating learned
the correct policy weights, B, to three significant digits after extensive training. Very
interesting behavior was exhibited by the plane under certain initial conditions. The plane
learned that in some cases it is better to turn toward the missile in the short term to
increase the distance between the two in the long term. A tactic sometimes used by
pilots. Figure 1 gives an example.

10r-------......

............................ ~
.......

i ... ··

\.

~/
.......................

.........
.'

.'
I

\.

GO
V
C •
til
0.01

.001

.0001
0 0.04 0.08 0.12

Time

Figure 1: Simulation of a missile (dotted line) pursuing a plane (solid line), each
having learned optimal behavior. The graph of distance vs. time show the effects of
the plane's maneuver in turning toward the missile.

358 Mance E. Harmon. Leemon C. Baird III. A. Harry Klopf

4.2 COMPARATIVE RESULTS

. The error in the policy of a learning system was defined to be the sum of the squared
errors in the B matrix weights. The optimal policy weights in this problem are the same
for both advantage updating and Q-learning, so this metric can be used to compare results
for both algorithms. Four different learning algorithms were compared: advantage
updating, Q-Iearning, Residual Gradient advantage updating, and Residual Gradient Q­
learning. Advantage updating in the non-residual-gradient form was unstable to the point
that no meaningful results could be obtained, so simulation results cannot be given for it.

4.2.1 Experiment Set 1

The learning rates for both forms of Q-Iearning were optimized to one significant digit for
each simulation. A single learning rate was used for residual-gradient advantage updating
in all four simulations. It is possible that advantage updating would have performed
better with different learning rates. For each algorithm, the error was calculated after
learning for 40,000 iterations. The process was repeated 10 times using different random
number seeds and the results were averaged. This experiment was performed for four
different time step durations, 0.05, 0.005, 0.0005, and 0.00005. The non-residual­
gradient form of Q-Iearning appeared to work better when the weights were initialized to
small numbers. Therefore, the initial weights were chosen randomly between 0 and 1 for
the residual-gradient forms of the algorithms, and between 0 and 10-8 for the non-residual­
gradient form of Q-learning. For small time steps, nonresidual-gradient Q-Iearning
performed so poorly that the error was lower for a learning rate of zero (no learning) than
it was for a learning rate of 10-8 . Table 1 gives the learning rates used for each
simulation, and figure 2 shows the resulting error after learning.

8 •
6 ---0

0-- [J

Final 4 -D--FQ

Error
2 -·-RAU • •
0

0.05 0.005 0.0005 0.00005

TIme Step Duration

Figure 2: Error vs. time step size comparison for Q-Learning (Q), residual-gradient
Q-Learning(RQ), and residual-gradient advantage updating(RAU) using rates optimal
to one significant figure for both forms of Q-Iearning, and not optimized for
advantage updating. The final error is the sum of squared errors in the B matrix
weights after 40,000 time steps of learning. The final error for advantage updating
was lower than both forms of Q-learning in every case. The errors increased for Q­
learning as the time step size decreased.

Advantage Updating Applied to a Differential Game 359

Time step duration, III

5.10-2 5.10-3 5.10-4 5.10-5

Q 0.02 0.06 0.2 0.4

RQ 0.08 0.09 0 0

RAU 0.005 0.005 0.005 0.005

Table 1: Learning rates used for each simulation. Learning rates are optimal to one
significant figure for both forms of Q-learning, but are not necessarily optimal for
advantage updating.

4.2.2 Experiment Set 2

Figure 3 shows a comparison of the three algorithms' ability to converge to the correct
policy. The figure shows the total squared error in each algorithms' policy weights as a
function of learning time. This simulation ran for a much longer period than the
simulations in table 1 and figure 2. The learning rates used for this simulation were
identical to the rates that were found to be optimal for the shorter run. The weights for
the non-Residual gradient form of Q-Iearning grew without bound in all of the long
experiments, even after the learning rate was reduced by an order of magnitude. Residual
gradient advantage updating was able to learn the correct policy, while Q-learning was
unable to learn a policy that was better than the initial, random weights.

Leorning Ability Comporison
10~------------------,

Error .1 ---RAU

- - - - -, RO,

,01

,001
0 2 3 4 5

Time Steps in millions

5 Conclusion
Figure 3

The experimental data shows residual-gradient advantage updating to be superior to the
three other algorithms in all cases. As the time step grows small, Q-learning is unable to
learn the correct policy. Future research will include the use of more general networks
and implementation of the wire fitting algorithm proposed by Baird and Klopf (1994) to
calculate the policy from a continuous choice of actions in more general networks.

360 Mance E. Hannon. Leemon C. Baird Ill. A. Harry Klopf

Acknowledgments

This research was supported under Task 2312Rl by the Life and Environmental Sciences
Directorate of the United States Air Force Office of Scientific Research.

References

Baird, L.C. (1993). Advantage updating Wright-Patterson Air Force Base, OH. (Wright
Laboratory Technical Report WL-TR-93-1146, available from the Defense Technical
information Center, Cameron Station, Alexandria, VA 22304-6145).

Baird, L.C., & Harmon, M. E. (In preparation). Residual gradient algorithms Wright­
Patterson Air Force Base, OH. (Wright Laboratory Technical report) .

Baird, L.C., & Klopf, A. H. (1993). Reinforcement learning with high-dimensional.
continuous actions Wright-Patterson Air Force Base, OH. (Wright Laboratory technical
report WL-TR-93-1147, available from the Defense Technical information Center,
Cameron Station, Alexandria, VA 22304-6145).

Bertsekas, D. P. (1987). Dynamic programming: Deterministic and stochastic models.
Englewood Cliffs, NJ: Prentice-Hall.

Bradtke, S. J. (1993). Reinforcement Learning Applied to Linear Quadratic Regulation.
Proceedings of the 5th annual Conference on Neural Information Processing Systems.

Isaacs, Rufus (1965). Differential games. New York: John Wiley and Sons, Inc.

Millington, P. J. (1991). Associative reinforcement learning for optimal control.
Unpublished master's thesis, Massachusetts Institute of Technology, Cambridge, MA.

Rajan, N., Prasad, U. R., and Rao, N. J. (1980). Pursuit-evasion of two aircraft in a
horizontal plane. Journal of Guidance and Control. 3(3). May-June, 261-267.

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by
backpropagating errors. Nature. 323 .. 9 October, 533-536.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. Proceedings of the Seventh International
Conference on Machine Learning.

Tesauro, G. (1990). Neurogammon: A neural-network backgammon program.
Proceedings of the International Joint Conference on Neural Networks . 3 .. (pp. 33-40).
San Diego, CA.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,
8(3/4), 279-292.

Watkins, C. J. C. H. (1989). Learningfrom delayed rewards. Doctoral thesis, Cambr~dge
University, Cambridge, England.

