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Abstract 

An application of reinforcement learning to a linear-quadratic, differential 
game is presented. The reinforcement learning system uses a recently 
developed algorithm, the residual gradient form of advantage updating. 
The game is a Markov Decision Process (MDP) with continuous time, 
states, and actions, linear dynamics, and a quadratic cost function. The 
game consists of two players, a missile and a plane; the missile pursues 
the plane and the plane evades the missile. The reinforcement learning 
algorithm for optimal control is modified for differential games in order to 
find the minimax point, rather than the maximum. Simulation results are 
compared to the optimal solution, demonstrating that the simulated 
reinforcement learning system converges to the optimal answer. The 
performance of both the residual gradient and non-residual gradient forms 
of advantage updating and Q-learning are compared. The results show that 
advantage updating converges faster than Q-learning in all simulations. 
The results also show advantage updating converges regardless of the time 
step duration; Q-learning is unable to converge as the time step duration 
~rows small. 
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1 ADVANTAGE UPDATING 

The advantage updating algorithm (Baird, 1993) is a reinforcement learning algorithm in 
which two types of information are stored. For each state x, the value V(x) is stored, 
representing an estimate of the total discounted return expected when starting in state x 
and performing optimal actions. For each state x and action u, the advantage, A(x,u), is 
stored, representing an estimate of the degree to which the expected total discounted 
reinforcement is increased by performing action u rather than the action currently 
considered best. The optimal value function V* (x) represents the true value of each state. 
The optimal advantage function A * (x,u) will be zero if u is the optimal action (because u 
confers no advantage relative to itself) and A * (x,u) will be negative for any suboptimal u 
(because a suboptimal action has a negative advantage relative to the best action). The 
optimal advantage function A * can be defined in terms of the optimal value function v*: 

A*(x,u) = ~[RN(X,U)-V*(x)+ rNV*(x')] 
bat 

(1) 

The definition of an advantage includes a l/flt term to ensure that, for small time step 
duration flt, the advantages will not all go to zero. 

Both the value function and the advantage function are needed during learning, but after 
convergence to optimality, the policy can be extracted from the advantage function alone. 
The optimal policy for state x is any u that maximizes A * (x,u). The notation 

~ax (x) = max A(x,u) 
" 

(2) 

defines Amax(x). If Amax converges to zero in every state, the advantage function is said 
to be normalized. Advantage updating has been shown to learn faster than Q-Iearning 
(Watkins, 1989), especially for continuous-time problems (Baird, 1993). 

If advantage updating (Baird, 1993) is used to control a deterministic system, there are two 
equations that are the equivalent of the Bellman equation in value iteration (Bertsekas, 
1987). These are a pair of two simultaneous equations (Baird, 1993): 

A(x,u)-maxA(x,u') =(R+ y l1lV(x')- V(X»)_l 
w ~t 

(3) 

maxA(x,u)=O (4) 
" 

where a time step is of duration L1t, and performing action u in state x results in a 
reinforcement of R and a transition to state Xt+flt. The optimal advantage and value 
functions will satisfy these equations. For a given A and V function, the Bellman 
residual errors, E, as used in Williams and Baird (1993) and defined here as equations (5) 
and (6).are the degrees to which the two equations are not satisfied: 

E1 (xl,u) = (R(x"u)+ y l1lV(xt+l1I)- V(XI»)~- A(x"u)+ max A(x,,u' ) (5) 
~t w 

E2 (x,u)=-maxA(x,u) (6) 
" 
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2 RESIDUAL GRADIENT ALGORITHMS 

Dynamic programming algorithms can be guaranteed to converge to optimality when used 
with look-up tables, yet be completely unstable when combined with function­
approximation systems (Baird & Harmon, In preparation). It is possible to derive an 
algorithm that has guaranteed convergence for a quadratic function approximation system 
(Bradtke, 1993), but that algorithm is specific to quadratic systems. One solution to this 
problem is to derive a learning algorithm to perfonn gradient descent on the mean squared 
Bellman residuals given in (5) and (6). This is called the residual gradient form of an 
algorithm. 

There are two Bellman residuals, (5) and (6), so the residual gradient algorithm must 
perfonn gradient descent on the sum of the two squared Bellman residuals. It has been 
found to be useful to combine reinforcement learning algorithms with function 
approximation systems (Tesauro, 1990 & 1992). If function approximation systems are 
used for the advantage and value functions, and if the function approximation systems are 
parameterized by a set of adjustable weights, and if the system being controlled is 
deterministic, then, for incremental learning, a given weight W in the function­
approximation system could be changed according to equation (7) on each time step: 

dW = _ a a[E;(x"u,) + E;(x"u,)] 
2 aw 

_ _ E ( ) aE1 (x, ,u,) _ E ( ) aE2 (x" u, ) 
- a 1 x"u, aw a 2 x"u, aw 

= _a(_l (R + yMV(X'+M) - V (x) ) - A(x"u,) + max A(X"U)) 
dt u 

_(_I (yfJJ aV(x,+fJJ) _ av(x,))_ aA(x"u,) + am~XA(xt'U)J 
dt aw aw aw aw 

(7) 

amaxA(x"u) 
-amaxA(x"u) U a 

U W 
As a simple, gradient-descent algorithm, equation (7) is guaranteed to converge to the 
correct answer for a deterministic system, in the same sense that backpropagation 
(Rumelhart, Hinton, Williams, 1986) is guaranteed to converge. However, if the system 
is nondetenninistic, then it is necessary to independently generate two different possible 
"next states" Xt+L1t for a given action Ut perfonned in a given state Xt. One Xt+L1t must 

be used to evaluate V(Xt+L1t), and the other must be used to evaluate %w V(xt+fJJ)' 

This ensures that the weight change is an unbiased estimator of the true Bellman-residual 
gradient, but requires a system such as in Dyna (Sutton, 1990) to generate the second 
Xt+L1t. The differential game in this paper was detenninistic, so this was not needed here. 
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3 THE SIMULATION 

3.1 GAME DEFINITION 

We employed a linear-quadratic, differential game (Isaacs, 1965) for comparing Q-learning 
to advantage updating, and for comparing the algorithms in their residual gradient forms. 
The game has two players, a missile and a plane, as in games described by Rajan, Prasad, 
and Rao (1980) and Millington (1991). The state x is a vector (xm,xp) composed of the 
state of the missile and the state of the plane, each of which are composed of the poSition 
and velocity of the player in two-dimensional space. The action u is a vector (um,up) 
composed of the action performed by the missile and the action performed by the plane, 
each of which are the acceleration of the player in two-dimensional space. The dynamics 
of the system are linear; the next state xt+ 1 is a linear function of the current state Xl and 
action Ul. The reinforcement function R is a quadratic function of the accelerations and 
the distance between the players. 

R(x,u)= [distance2 + (missile acceleration)2 - 2(plane acceleration)2]6t (8) 

R(X,U)=[(Xm -Xp)2 +U~-2U!]llt (9) 

In equation (9), squaring a vector is equivalent to taking the dot product of the vector with 
itself. The missile seeks to minimize the reinforcement, and the plane seeks to maximize 
reinforcement. The plane receives twice as much punishment for acceleration as does the 
missile, thus allowing the missile to accelerate twice as easily as the plane. 

The value function V is a quadratic function of the state. In equation (10), Dm and Dp 
are weight matrices that change during learning. 

(10) 

The advantage function A is a quadratic function of the state X and action u. The actions 
are accelerations of the missile and plane in two dimensions. 

A(x,u)=x~Amxm +x~BmCmum +u~Cmum + 

x~Apxp +x~BpCpup +u~Cpup 
(11) 

The matrices A, B, and C are the adjustable weights that change during learning. 
Equation (11) is the sum of two general quadratic functions. This would still be true if 
the second and fifth terms were xBu instead of xBCu. The latter form was used to 
simplify the calculation of the policy. Using the xBu form, the gradient is zero when 
u=-C-lBx!2. Using the xBCu form, the gradient of A(x,u) with respect to u is zero 
when u=-Bx!2, which avoids the need to invert a matrix while calculating the policy. 

3.2 THE BELLMAN RESIDUAL AND UPDATE EQUATIONS 

Equations (5) and (6) define the Bellman residuals when maximizing the total discounted 
reinforcement for an optimal control problem; equations (12) and (13) modify the 
algorithm to solve differential games rather than optimal control problems. 
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E1(x"u,) = (R(x"u,)+ r6tV(xl+6t)- V(X,»)..!...- A(x"u,)+ minimax A(x,) (12) 
tl.t 

E2(x"u,)=-minimax A(x,) (13) 

The resulting weight update equation is: 

tl.W = -aU R+ r 6tV(X'M')- V(x,») 1t - A(x"u,)+minimax A(X,») 

.((rt:., aV~6t) aV(X,»)_1 _ aA(x"u,) + aminimax A(X,») 
aW tl.t aw aw (14) 

" A() aminimax A(x,) 
-amzmmax x, aw 

For Q-leaming, the residual-gradient form of the weight update equation is: 

tl.W = -a( R+ r 6t minimax Q(Xl+dt)-Q(x"u,») 

.( r 6t -kminimax Q(x,+6t)--kQ(x"u,») 

4 RESULTS 

4.1 RESIDUAL GRADIENT ADVANTAGE UPDATING RESULTS 

(15) 

The optimal weight matrices A * , B *, C *, and D * were calculated numerically with 
Mathematica for comparison. The residual gradient form of advantage updating learned 
the correct policy weights, B, to three significant digits after extensive training. Very 
interesting behavior was exhibited by the plane under certain initial conditions. The plane 
learned that in some cases it is better to turn toward the missile in the short term to 
increase the distance between the two in the long term. A tactic sometimes used by 
pilots. Figure 1 gives an example. 
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Figure 1: Simulation of a missile (dotted line) pursuing a plane (solid line), each 
having learned optimal behavior. The graph of distance vs. time show the effects of 
the plane's maneuver in turning toward the missile. 
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4.2 COMPARATIVE RESULTS 

. The error in the policy of a learning system was defined to be the sum of the squared 
errors in the B matrix weights. The optimal policy weights in this problem are the same 
for both advantage updating and Q-learning, so this metric can be used to compare results 
for both algorithms. Four different learning algorithms were compared: advantage 
updating, Q-Iearning, Residual Gradient advantage updating, and Residual Gradient Q­
learning. Advantage updating in the non-residual-gradient form was unstable to the point 
that no meaningful results could be obtained, so simulation results cannot be given for it. 

4.2.1 Experiment Set 1 

The learning rates for both forms of Q-Iearning were optimized to one significant digit for 
each simulation. A single learning rate was used for residual-gradient advantage updating 
in all four simulations. It is possible that advantage updating would have performed 
better with different learning rates. For each algorithm, the error was calculated after 
learning for 40,000 iterations. The process was repeated 10 times using different random 
number seeds and the results were averaged. This experiment was performed for four 
different time step durations, 0.05, 0.005, 0.0005, and 0.00005. The non-residual­
gradient form of Q-Iearning appeared to work better when the weights were initialized to 
small numbers. Therefore, the initial weights were chosen randomly between 0 and 1 for 
the residual-gradient forms of the algorithms, and between 0 and 10-8 for the non-residual­
gradient form of Q-learning. For small time steps, nonresidual-gradient Q-Iearning 
performed so poorly that the error was lower for a learning rate of zero (no learning) than 
it was for a learning rate of 10-8 . Table 1 gives the learning rates used for each 
simulation, and figure 2 shows the resulting error after learning. 

8 • 
6 ---0 

0-- [J 

Final 4 -D--FQ 

Error 
2 -·-RAU • • 
0 

0.05 0.005 0.0005 0.00005 

TIme Step Duration 

Figure 2: Error vs. time step size comparison for Q-Learning (Q), residual-gradient 
Q-Learning(RQ), and residual-gradient advantage updating(RAU) using rates optimal 
to one significant figure for both forms of Q-Iearning, and not optimized for 
advantage updating. The final error is the sum of squared errors in the B matrix 
weights after 40,000 time steps of learning. The final error for advantage updating 
was lower than both forms of Q-learning in every case. The errors increased for Q­
learning as the time step size decreased. 
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Time step duration, III 

5.10-2 5.10-3 5.10-4 5.10-5 

Q 0.02 0.06 0.2 0.4 

RQ 0.08 0.09 0 0 

RAU 0.005 0.005 0.005 0.005 

Table 1: Learning rates used for each simulation. Learning rates are optimal to one 
significant figure for both forms of Q-learning, but are not necessarily optimal for 
advantage updating. 

4.2.2 Experiment Set 2 

Figure 3 shows a comparison of the three algorithms' ability to converge to the correct 
policy. The figure shows the total squared error in each algorithms' policy weights as a 
function of learning time. This simulation ran for a much longer period than the 
simulations in table 1 and figure 2. The learning rates used for this simulation were 
identical to the rates that were found to be optimal for the shorter run. The weights for 
the non-Residual gradient form of Q-Iearning grew without bound in all of the long 
experiments, even after the learning rate was reduced by an order of magnitude. Residual 
gradient advantage updating was able to learn the correct policy, while Q-learning was 
unable to learn a policy that was better than the initial, random weights. 
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5 Conclusion 
Figure 3 

The experimental data shows residual-gradient advantage updating to be superior to the 
three other algorithms in all cases. As the time step grows small, Q-learning is unable to 
learn the correct policy. Future research will include the use of more general networks 
and implementation of the wire fitting algorithm proposed by Baird and Klopf (1994) to 
calculate the policy from a continuous choice of actions in more general networks. 
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