
Phase-Space Learning

Fu-Sheng Tsung
Chung Tai Ch'an Temple

56, Yuon-fon Road, Yi-hsin Li, Pu-li
Nan-tou County, Taiwan 545

Republic of China

Garrison W. Cottrell·
Institute for Neural Computation
Computer Science & Engineering

University of California, San Diego
La Jolla, California 92093

Abstract

Existing recurrent net learning algorithms are inadequate. We in­
troduce the conceptual framework of viewing recurrent training as
matching vector fields of dynamical systems in phase space. Phase­
space reconstruction techniques make the hidden states explicit,
reducing temporal learning to a feed-forward problem. In short,
we propose viewing iterated prediction [LF88] as the best way of
training recurrent networks on deterministic signals. Using this
framework, we can train multiple trajectories, insure their stabil­
ity, and design arbitrary dynamical systems.

1 INTRODUCTION

Existing general-purpose recurrent algorithms are capable of rich dynamical be­
havior. Unfortunately, straightforward applications of these algorithms to training
fully-recurrent networks on complex temporal tasks have had much less success
than their feedforward counterparts. For example, to train a recurrent network
to oscillate like a sine wave (the "hydrogen atom" of recurrent learning), existing
techniques such as Real Time Recurrent Learning (RTRL) [WZ89] perform sub­
optimally. Williams & Zipser trained a two-unit network with RTRL, with one
teacher signal. One unit of the resulting network showed a distorted waveform, the
other only half the desired amplitude. [Pea89] needed four hidden units. However,
our work demonstrates that a two-unit recurrent network with no hidden units can
learn the sine wave very well [Tsu94]. Existing methods also have several other

·Correspondence should be addressed to the second author: gary@cs.ucsd.edu

482 Fu-Sheng Tsung, Garrison W. Cottrell

limitations. For example, networks often fail to converge even though a solution
is known to exist; teacher forcing is usually necessary to learn periodic signals; it
is not clear how to train multiple trajectories at once, or how to insure that the
trained trajectory is stable (an attractor).

In this paper, we briefly analyze the algorithms to discover why they have such
difficulties, and propose a general solution to the problem. Our solution is based on
the simple idea of using the techniques of time series prediction as a methodology
for recurrent network training.

First, by way of introducing the appropriate concepts, consider a system of coupled
autonomous l first order network equations:

FI (Xl (t), X2(t), . .. , Xn (t))
F2(XI(t), X2(t),· · ·, Xn(t))

or, in vector notation,

X(t) = F(X) where XCt) = (XICt), X2(t),·· ., xn(t))

The phase space is the space of the dependent variables (X), it does not include t,
while the state space incorporates t. The evolution of a trajectory X(t) traces out
a phase curve, or orbit, in the n-dimensional phase space of X . For low dimensional
systems (2- or 3-D), it is easy to visualize the limit sets in the phase space: a fixed
point and a limit cycle become a single point and a closed orbit (closed curve),
respectively. In the state space they become an infinite straight line and a spiral.
F(X) defines the vector field of X, because it associates a vector with each point
in the phase space of X whose direction and magnitude determines the movement
of that point in the next instant of time (by definition, the tangent vector).

2 ANALYSIS OF CURRENT APPROACHES

To get a better understanding of why recurrent algorithms have not been very effec­
tive, we look at what happens during training with two popular recurrent learning
techniques: RTRL and back propagation through time (BPTT). With each, we il­
lustrate a different problem, although the problems apply equally to each technique.

RTRL is a forward-gradient algorithm that keeps a matrix of partial derivatives
of the network activation values with respect to every weight. To train a periodic
trajectory, it is necessary to teacher-force the visible units [WZ89], i.e., on every
iteration, after the gradient has been calculated, the activations of the visible units
are replaced by the teacher. To see why, consider learning a pair of sine waves offset
by 90°. In phase space, this becomes a circle (Figure la). Initially the network

1 Autonomous means the right hand side of a differential equation does not explicitly ref­
erence t, e.g. dx/dt = 2x is autonomous, even though x is a function oft, but dx/dt = 2x+t
is not. Continuous neural networks without inputs are autonomous. A nonautonomous
system can always be turned into an autonomous system in a higher dimension.

Phase-Space Learning 483

a b

Figure 1: Learning a pair of sine waves with RTRL learning. (a) without teacher
forcing, the network dynamics (solid arrows) take it far from where the teacher
(dotted arrows) assumes it is, so the gradient is incorrect. (b) With teacher forcing,
the network's visible units are returned to the trajectory.

(thick arrows) is at position Xo and has arbitrary dynamics. After a few iterations,
it wanders far away from where the teacher (dashed arrows) assumes it to be. The
teacher then provides an incorrect next target from the network's current position.
Teacher-forcing (Figure 1b), resets the network back on the circle, where the teacher
again provides useful information.

However, if the network has hidden units, then the phase space of the visible units
is just a projection of the actual phase space of the network, and the teaching
signal gives no information as to where the hidden units should be in this higher­
dimensional phase space. Hence the hidden unit states, unaltered by teacher forcing ,
may be entirely unrelated to what they should be. This leads to the moving targets
problem. During training, every time the visible units re-visit a point, the hidden
unit activations will differ, Thus the mapping changes during learning. (See [Pin88,
WZ89] for other discussions of teacher forcing.)

With BPTT, the network is unrolled in time (Figure 2). This unrolling reveals
another problem: Suppose in the teaching signal, the visible units' next state is a
non-linearly separable function of their current state. Then hidden units are needed
between the visible unit layers, but there are no intermediate hidden units in the
unrolled network. The network must thus take two time steps to get to the hidden
units and back. One can deal with this by giving the teaching signal every other
iteration, but clearly, this is not optimal (consider that the hidden units must "bide
their time" on the alternate steps).2

The trajectories trained by RTRL and BPTT tend to be stable in simulations of
simple tasks [Pea89, TCS90], but this stability is paradoxical. Using teacher forc­
ing, the networks are trained to go from a point on the trajectory, to a point within
the ball defined by the error criterion f (see Figure 4 (a)). However, after learning,
the networks behave such that from a place near the trajectory, they head for the
trajectory (Figure 4 (b)). Hence the paradox. Possible reasons are: 1) the hid­
den unit moving targets provide training off the desired trajectory, so that if the
training is successful, the desired trajectory is stable; 2) we would never consider
the training successful if the network "learns" an unstable trajectory; 3) the stable
dynamics in typical situations have simpler equations than the unstable dynam­
ics [N ak93]. To create an unstable periodic trajectory would imply the existence of
stable regions both inside and outside the unstable trajectory; dynamically this is

2 At NIPS, 0 delay connections to the hidden units were suggested, which is essentially
part of the solution given here.

484

Figure 2: A nonlinearly separable
mapping must be computed by the
hidden units (the leftmost unit here)
every other time step.

"

a

Fu-Sheng Tsung, Garrison W. Cottrell

~------------.

Figure 3: The network used for iter­
ated prediction training. Dashed con­
nections are used after learning.

b

Figure 4: The paradox of attractor learning with teacher forcing. (a) During learn­
ing, the network learns to move from the trajectory to a point near the trajectory.
(b) After learning, the network moves from nearby points towards the trajectory.

more complicated than a simple periodic attractor. In dynamically complex tasks,
a stable trajectory may no longer be the simplest solution, and stability could be a
problem.

In summary, we have pointed out several problems in the RTRL (forward-gradient)
and BPTT (backward-gradient) classes of training algorithms:

1. Teacher forcing with hidden units is at best an approximation, and leads
to the moving targets problem.

2. Hidden units are not placed properly for some tasks.

3. Stability is paradoxical.

3 PHASE-SPACE LEARNING

The inspiration for our approach is prediction training [LF88], which at first appears
similar to BPTT, but is subtly different. In the standard scheme, a feedforward
network is given a time window, a set of previous points on the trajectory to be
learned, as inputs. The output is the next point on the trajectory. Then, the inputs
are shifted left and the network is trained on the next point (see Figure 3). Once
the network has learned, it can be treated as recurrent by iterating on its own
predictions.

The prediction network differs from BPTT in two important ways. First, the vis­
ible units encode a selected temporal history of the trajectory (the time window) .
The point of this delay space embedding is to reconstruct the phase space of the
underlying system. [Tak81] has shown that this can always be done for a deter­
ministic system. Note that in the reconstructed phase space, the mapping from one

Phase-Space Learning

a

YI+I

r;.-.-.-. --------.. ,--­...
'" '" '" .. ,
'" •••

485

b

Figure 5: Phase-space learning. (a) The training set is a sample of the vector field.
(b) Phase-space learning network. Dashed connections are used after learning.

point to the next (based on the vector field) is deterministic. Hence what originally
appeared to be a recurrent network problem can be converted into an entirely feed
forward problem. Essentially, the delay-space reconstruction makes hidden states
visible, and recurrent hidden units unnecessary. Crucially, dynamicists have de­
veloped excellent reconstruction algorithms that not only automate the choices of
delay and embedding dimension but also filter out noise or get a good reconstruc­
tion despite noise [FS91, Dav92, KBA92]. On the other hand, we clearly cannot
deal with non-deterministic systems by this method.

The second difference from BPTT is that the hidden units are between the visible
units, allowing the network to produce nonlinearly separable transformations of the
visible units in a single iteration. In the recurrent network produced by iterated
prediction, the sandwiched hidden units can be considered "fast" units with delays
on the input/output links summing to 1.

Since we are now lear~ing a mapping in phase space, stability is easily ensured by
adding additional training examples that converge towards the desired orbit.3 We
can also explicitly control convergence speed by the size and direction of the vectors.

Thus, phase-space learning (Figure 5) consists of: (1) embedding the temporal
signal to recover its phase space structure, (2) generating local approximations of
the vector field near the desired trajectory, and (3) functional approximation of the
vector field with a feedforward network. Existing methods developed for these three
problems can be directly and independently applied to solve the problem. Since
feedforward networks are universal approximators [HSW89], we are assured that
at least locally, the trajectory can be represented. The trajectory is recovered from
the iterated output of the pre-embedded portion of the visible units. Additionally,
we may also extend the phase-space learning framework to also include inputs that
affect the output of the system (see [Tsu94] for details).4

In this framework, training multiple attractors is just training orbits in different
parts of the phase space, so they simply add more patterns to the training set.
In fact, we can now create designer dynamical systems possessing the properties
we want, e.g., with combinations of fixed point, periodic, or chaotic attractors.

3The common practice of adding noise to the input in prediction training is just a
simple minded way of adding convergence information.

4Principe & Kuo(this volume) show that for chaotic attractors, it is better to treat this
as a recurrent net and train using the predictions.

486 Fu-Sheng Tsung, Garrison W. Cottrell

0.5 Q
-0.5

-0.5 0 0.5

Figure 6: Learning the van der Pol oscillator. (a) the training set. (b) Phase space
plot of network (solid curve) and teacher (dots). (c) State space plot.

As an example, to store any number of arbitrary periodic attractors Zi(t) with
periods 11 in a single recurrent network, create two new coordinates for each Zi(t),
(Xi(t),Yi(t)) = (sin(*t),cos(*t)), where (Xi,Yi) and (Xj,Yj) are disjoint circles
for i 'I j. Then (Xi, Yi, Zi) is a valid embedding of all the periodic attractors in
phase space, and the network can be trained. In essence, the first two dimensions
form "clocks" for their associated trajectories.

4 SIMULATION RESULTS

In this section we illustrate the method by learning the van der Pol oscillator (a much
more difficult problem than learning sine waves), learning four separate periodic
attractors, and learning an attractor inside the basin of another attractor.

4.1 LEARNING THE VAN DER POL OSCILLATOR

The van der Pol equation is defined by:

We used the values 0.7, 1, 1 for the parameters a, b, and w, for which there is a
global periodic attractor (Figure 6). We used a step size of 0.1, which discretizes
the trajectory into 70 points. The network therefore has two visible units. We used
two hidden layers with 20 units each, so that the unrolled, feedforward network has
a 2-20-20-2 architecture. We generated 1500 training pairs using the vector field
near the attractor. The learning rate was 0.01, scaled by the fan-in, momentum was
0.75, we trained for 15000 epochs. The order of the training pairs was randomized.
The attractor learned by the network is shown in (Figure 6 (b)). Comparison of the
temporal trajectories is shown in Figure 6 (c); there is a slight frequency difference.
The average MSE is 0.000136. Results from a network with two layers of 5 hidden
units each with 500 data pairs were similar (MSE=0.00034).

4.2 LEARNING MULTIPLE PERIODIC ATTRACTORS

[Hop82] showed how to store multiple fixed-point at tractors in a recurrent net.
[Bai91] can store periodic and chaotic at tractors by inverting the normal forms of
these attractors into higher order recurrent networks. However, traditional recurrent
training offers no obvious method of training multiple attractors. [DY89] were able

Phase.Space Learning

'I'---:.ru"='"""--'O~--:O-=-" ---!

A

.I'--::.ru-;---;;--;;-:Oj---!

8

100 1OO 300 400

D

.ru 0 OJ

E

487

_.0.1. Il.6, 0.63. 0.7

'1'--::4U~-::-0 --;Oj~-!

F

1.--------,

~~
.1 0 50 100 150 1OO ~ 300

H

Figure 7: Learning mUltiple attractors. In each case, a 2-20-20-2 network using
conjugate gradient is used. Learning 4 attractors: (A) Training set. (B) Eight
trajectories of the trained network. (C) Induced vector field of the network. There
are five unstable fixed points. (D) State space behavior as the network is "bumped"
between attractors. Learning 2 attractors, one inside the other: (E) Training set.
(F) Four trajectories ofthe trained network. (G) Induced vector field of the network.
There is an unstable limit cycle between the two stable ones. (H) State space
behavior with a "bump".

to store two limit cycles by starting with fixed points stored in a Hopfield net, and
training each fixed point locally to become a periodic attractor. Our approach has
no difficulty with multiple attractors. Figure 7 (A-D) shows the result of training
four coexisting periodic attractors, one in each quadrant of the two-dimensional
phase space. The network will remain in one of the attractor basins until an external
force pushes it into another attractor basin. Figure 7 (E-H) shows a network with
two periodic attractors, this time one inside the other. This vector field possess
an unstable limit cycle between the two stable limit cycles. This is a more difficult
task, requiring 40 hidden units, whereas 20 suffice for the previous task (not shown).

5 SUMMARY

We have presented a phase space view of the learning process in recurrent nets.
This perspective has helped us to understand and overcome some of the problems
of using traditional recurrent methods for learning periodic and chaotic attractors.
Our method can learn multiple trajectories, explicitly insure their stability, and
avoid overfitting; in short, we provide a practical approach to learning complicated
temporal behaviors. The phase-space framework essentially breaks the problem
into three sub-problems: (1) Embedding a temporal signal to recover its phase
space structure, (2) generating local approximations of the vector field near the
desired trajectory, and (3) functional approximation in feedforward networks. We
have demonstrated that using this method, networks can learn complex oscillations
and multiple periodic attractors.

488 Fu-Sheng Tsung, Garrison W. Cottrell

Acknowledgements

This work was supported by NIH grant R01 MH46899-01A3. Thanks for comments
from Steve Biafore, Kenji Doya, Peter Rowat, Bill Hart, and especially Dave DeMers
for his timely assistance with simulations.

References

[Bai91]

[Dav92]

[DY89]

[FS91]

W. Baird and F. Eeckman. Cam storage of analog patterns and continuous
sequences with 3n2 weights. In R.P. Lippmann, J .E. Moody, and D.S.
Touretzky, editors, Advances in Neural Information Processing Systems,
volume 3, pages 91-97, 1991. Morgan Kaufmann, San Mateo.
M. Davies. Noise reduction by gradient descent. International Journal of
Bifurcation and Chaos, 3:113-118, 1992.
K. Doya and S. Yoshizawa. Memorizing oscillatory patterns in the analog
neuron network. In IJCNN, Washington D.C., 1989. IEEE.
J.D. Farmer and J.J. Sidorowich. Optimal shadowing and noise reduction.
Physica D, 47:373-392, 1991.

[Hop82] J.J. Hopfield. Neural networks and physical systems with emergent col­
lective computational abilities. Proceedings of the National Academy of
Sciences, USA, 79, 1982.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net­
works are universal approximators. Neural Networks, 2:359-366, 1989.

[KBA92] M.B. Kennel, R. Brown, and H. Abarbanel. Determining embedding di­
mension for phase-space reconstruction using a geometrical construction.
Physical Review A, 45:3403-3411, 1992.

[LF88] A. Lapedes and R. Farber. How neural nets work. In D.Z. Anderson,
editor, Neural Information Processing Systems, pages 442-456, Denver
1987, 1988. American Institute of Physics, New York.

[N ak93] Hiroyuki Nakajima. A paradox in learning trajectories in neural networks.
Working paper, Dept. of EE II, Kyoto U., Kyoto, JAPAN, 1993.

[Pea89] B.A. Pearlmutter. Learning state space trajectories in recurrent neural
networks. Neural Computation, 1:263-269, 1989.

[Pin88] F.J . Pineda. Dynamics and architecture for neural computation. Journal
of Complexity, 4:216-245, 1988.

[Tak81] F. Takens. Detecting strange attractors in turbulence. In D.A. Rand and
L.-S. Young, editors, Dynamical Systems and Turbulence, volume 898
of Lecture Notes in Mathematics, pages 366-381, Warwick 1980, 1981.
Springer-Verlag, Berlin.

[TCS90] F-S. Tsung, G. W. Cottrell, and A. I. Selverston. Some experiments on
learning stable network oscillations. In IJCNN, San Diego, 1990. IEEE.

[Tsu94] F-S. Tsung. Modelling Dynamical Systems with Recurrent Neural Net­
works. PhD thesis, University of California, San Diego, 1994.

[WZ89] R.J. Williams and D. Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1:270-280, 1989.

