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Abstract 

Existing recurrent net learning algorithms are inadequate. We in­
troduce the conceptual framework of viewing recurrent training as 
matching vector fields of dynamical systems in phase space. Phase­
space reconstruction techniques make the hidden states explicit, 
reducing temporal learning to a feed-forward problem. In short, 
we propose viewing iterated prediction [LF88] as the best way of 
training recurrent networks on deterministic signals. Using this 
framework, we can train multiple trajectories, insure their stabil­
ity, and design arbitrary dynamical systems. 

1 INTRODUCTION 

Existing general-purpose recurrent algorithms are capable of rich dynamical be­
havior. Unfortunately, straightforward applications of these algorithms to training 
fully-recurrent networks on complex temporal tasks have had much less success 
than their feedforward counterparts. For example, to train a recurrent network 
to oscillate like a sine wave (the "hydrogen atom" of recurrent learning), existing 
techniques such as Real Time Recurrent Learning (RTRL) [WZ89] perform sub­
optimally. Williams & Zipser trained a two-unit network with RTRL, with one 
teacher signal. One unit of the resulting network showed a distorted waveform, the 
other only half the desired amplitude. [Pea89] needed four hidden units. However, 
our work demonstrates that a two-unit recurrent network with no hidden units can 
learn the sine wave very well [Tsu94]. Existing methods also have several other 

·Correspondence should be addressed to the second author: gary@cs.ucsd.edu 
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limitations. For example, networks often fail to converge even though a solution 
is known to exist; teacher forcing is usually necessary to learn periodic signals; it 
is not clear how to train multiple trajectories at once, or how to insure that the 
trained trajectory is stable (an attractor). 

In this paper, we briefly analyze the algorithms to discover why they have such 
difficulties, and propose a general solution to the problem. Our solution is based on 
the simple idea of using the techniques of time series prediction as a methodology 
for recurrent network training. 

First, by way of introducing the appropriate concepts, consider a system of coupled 
autonomous l first order network equations: 

FI (Xl (t), X2(t), . .. , Xn (t)) 
F2(XI(t), X2(t),· · ·, Xn(t)) 

or, in vector notation, 

X(t) = F(X) where XCt) = (XICt), X2(t),·· ., xn(t)) 

The phase space is the space of the dependent variables (X), it does not include t, 
while the state space incorporates t. The evolution of a trajectory X(t) traces out 
a phase curve, or orbit, in the n-dimensional phase space of X . For low dimensional 
systems (2- or 3-D), it is easy to visualize the limit sets in the phase space: a fixed 
point and a limit cycle become a single point and a closed orbit (closed curve), 
respectively. In the state space they become an infinite straight line and a spiral. 
F(X) defines the vector field of X, because it associates a vector with each point 
in the phase space of X whose direction and magnitude determines the movement 
of that point in the next instant of time (by definition, the tangent vector). 

2 ANALYSIS OF CURRENT APPROACHES 

To get a better understanding of why recurrent algorithms have not been very effec­
tive, we look at what happens during training with two popular recurrent learning 
techniques: RTRL and back propagation through time (BPTT). With each, we il­
lustrate a different problem, although the problems apply equally to each technique. 

RTRL is a forward-gradient algorithm that keeps a matrix of partial derivatives 
of the network activation values with respect to every weight. To train a periodic 
trajectory, it is necessary to teacher-force the visible units [WZ89], i.e., on every 
iteration, after the gradient has been calculated, the activations of the visible units 
are replaced by the teacher. To see why, consider learning a pair of sine waves offset 
by 90°. In phase space, this becomes a circle (Figure la). Initially the network 

1 Autonomous means the right hand side of a differential equation does not explicitly ref­
erence t, e.g. dx/dt = 2x is autonomous, even though x is a function oft, but dx/dt = 2x+t 
is not. Continuous neural networks without inputs are autonomous. A nonautonomous 
system can always be turned into an autonomous system in a higher dimension. 
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Figure 1: Learning a pair of sine waves with RTRL learning. (a) without teacher 
forcing, the network dynamics (solid arrows) take it far from where the teacher 
(dotted arrows) assumes it is, so the gradient is incorrect. (b) With teacher forcing, 
the network's visible units are returned to the trajectory. 

(thick arrows) is at position Xo and has arbitrary dynamics. After a few iterations, 
it wanders far away from where the teacher (dashed arrows) assumes it to be. The 
teacher then provides an incorrect next target from the network's current position. 
Teacher-forcing (Figure 1b), resets the network back on the circle, where the teacher 
again provides useful information. 

However, if the network has hidden units, then the phase space of the visible units 
is just a projection of the actual phase space of the network, and the teaching 
signal gives no information as to where the hidden units should be in this higher­
dimensional phase space. Hence the hidden unit states, unaltered by teacher forcing , 
may be entirely unrelated to what they should be. This leads to the moving targets 
problem. During training, every time the visible units re-visit a point, the hidden 
unit activations will differ, Thus the mapping changes during learning. (See [Pin88, 
WZ89] for other discussions of teacher forcing.) 

With BPTT, the network is unrolled in time (Figure 2). This unrolling reveals 
another problem: Suppose in the teaching signal, the visible units' next state is a 
non-linearly separable function of their current state. Then hidden units are needed 
between the visible unit layers, but there are no intermediate hidden units in the 
unrolled network. The network must thus take two time steps to get to the hidden 
units and back. One can deal with this by giving the teaching signal every other 
iteration, but clearly, this is not optimal (consider that the hidden units must "bide 
their time" on the alternate steps).2 

The trajectories trained by RTRL and BPTT tend to be stable in simulations of 
simple tasks [Pea89, TCS90], but this stability is paradoxical. Using teacher forc­
ing, the networks are trained to go from a point on the trajectory, to a point within 
the ball defined by the error criterion f (see Figure 4 (a)). However, after learning, 
the networks behave such that from a place near the trajectory, they head for the 
trajectory (Figure 4 (b)). Hence the paradox. Possible reasons are: 1) the hid­
den unit moving targets provide training off the desired trajectory, so that if the 
training is successful, the desired trajectory is stable; 2) we would never consider 
the training successful if the network "learns" an unstable trajectory; 3) the stable 
dynamics in typical situations have simpler equations than the unstable dynam­
ics [N ak93]. To create an unstable periodic trajectory would imply the existence of 
stable regions both inside and outside the unstable trajectory; dynamically this is 

2 At NIPS, 0 delay connections to the hidden units were suggested, which is essentially 
part of the solution given here. 
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Figure 2: A nonlinearly separable 
mapping must be computed by the 
hidden units (the leftmost unit here) 
every other time step. 
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Figure 3: The network used for iter­
ated prediction training. Dashed con­
nections are used after learning. 

b 

Figure 4: The paradox of attractor learning with teacher forcing. (a) During learn­
ing, the network learns to move from the trajectory to a point near the trajectory. 
(b) After learning, the network moves from nearby points towards the trajectory. 

more complicated than a simple periodic attractor. In dynamically complex tasks, 
a stable trajectory may no longer be the simplest solution, and stability could be a 
problem. 

In summary, we have pointed out several problems in the RTRL (forward-gradient) 
and BPTT (backward-gradient) classes of training algorithms: 

1. Teacher forcing with hidden units is at best an approximation, and leads 
to the moving targets problem. 

2. Hidden units are not placed properly for some tasks. 

3. Stability is paradoxical. 

3 PHASE-SPACE LEARNING 

The inspiration for our approach is prediction training [LF88], which at first appears 
similar to BPTT, but is subtly different. In the standard scheme, a feedforward 
network is given a time window, a set of previous points on the trajectory to be 
learned, as inputs. The output is the next point on the trajectory. Then, the inputs 
are shifted left and the network is trained on the next point (see Figure 3). Once 
the network has learned, it can be treated as recurrent by iterating on its own 
predictions. 

The prediction network differs from BPTT in two important ways. First, the vis­
ible units encode a selected temporal history of the trajectory (the time window) . 
The point of this delay space embedding is to reconstruct the phase space of the 
underlying system. [Tak81] has shown that this can always be done for a deter­
ministic system. Note that in the reconstructed phase space, the mapping from one 
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Figure 5: Phase-space learning. (a) The training set is a sample of the vector field. 
(b) Phase-space learning network. Dashed connections are used after learning. 

point to the next (based on the vector field) is deterministic. Hence what originally 
appeared to be a recurrent network problem can be converted into an entirely feed 
forward problem. Essentially, the delay-space reconstruction makes hidden states 
visible, and recurrent hidden units unnecessary. Crucially, dynamicists have de­
veloped excellent reconstruction algorithms that not only automate the choices of 
delay and embedding dimension but also filter out noise or get a good reconstruc­
tion despite noise [FS91, Dav92, KBA92]. On the other hand, we clearly cannot 
deal with non-deterministic systems by this method. 

The second difference from BPTT is that the hidden units are between the visible 
units, allowing the network to produce nonlinearly separable transformations of the 
visible units in a single iteration. In the recurrent network produced by iterated 
prediction, the sandwiched hidden units can be considered "fast" units with delays 
on the input/output links summing to 1. 

Since we are now lear~ing a mapping in phase space, stability is easily ensured by 
adding additional training examples that converge towards the desired orbit.3 We 
can also explicitly control convergence speed by the size and direction of the vectors. 

Thus, phase-space learning (Figure 5) consists of: (1) embedding the temporal 
signal to recover its phase space structure, (2) generating local approximations of 
the vector field near the desired trajectory, and (3) functional approximation of the 
vector field with a feedforward network. Existing methods developed for these three 
problems can be directly and independently applied to solve the problem. Since 
feedforward networks are universal approximators [HSW89], we are assured that 
at least locally, the trajectory can be represented. The trajectory is recovered from 
the iterated output of the pre-embedded portion of the visible units. Additionally, 
we may also extend the phase-space learning framework to also include inputs that 
affect the output of the system (see [Tsu94] for details).4 

In this framework, training multiple attractors is just training orbits in different 
parts of the phase space, so they simply add more patterns to the training set. 
In fact, we can now create designer dynamical systems possessing the properties 
we want, e.g., with combinations of fixed point, periodic, or chaotic attractors. 

3The common practice of adding noise to the input in prediction training is just a 
simple minded way of adding convergence information. 

4Principe & Kuo(this volume) show that for chaotic attractors, it is better to treat this 
as a recurrent net and train using the predictions. 
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Figure 6: Learning the van der Pol oscillator. ( a) the training set. (b) Phase space 
plot of network (solid curve) and teacher (dots). (c) State space plot. 

As an example, to store any number of arbitrary periodic attractors Zi(t) with 
periods 11 in a single recurrent network, create two new coordinates for each Zi(t), 
(Xi(t),Yi(t)) = (sin(*t),cos(*t)), where (Xi,Yi) and (Xj,Yj) are disjoint circles 
for i 'I j. Then (Xi, Yi, Zi) is a valid embedding of all the periodic attractors in 
phase space, and the network can be trained. In essence, the first two dimensions 
form "clocks" for their associated trajectories. 

4 SIMULATION RESULTS 

In this section we illustrate the method by learning the van der Pol oscillator (a much 
more difficult problem than learning sine waves), learning four separate periodic 
attractors, and learning an attractor inside the basin of another attractor. 

4.1 LEARNING THE VAN DER POL OSCILLATOR 

The van der Pol equation is defined by: 

We used the values 0.7, 1, 1 for the parameters a, b, and w, for which there is a 
global periodic attractor (Figure 6). We used a step size of 0.1, which discretizes 
the trajectory into 70 points. The network therefore has two visible units. We used 
two hidden layers with 20 units each, so that the unrolled, feedforward network has 
a 2-20-20-2 architecture. We generated 1500 training pairs using the vector field 
near the attractor. The learning rate was 0.01, scaled by the fan-in, momentum was 
0.75, we trained for 15000 epochs. The order of the training pairs was randomized. 
The attractor learned by the network is shown in (Figure 6 (b)). Comparison of the 
temporal trajectories is shown in Figure 6 (c); there is a slight frequency difference. 
The average MSE is 0.000136. Results from a network with two layers of 5 hidden 
units each with 500 data pairs were similar (MSE=0.00034). 

4.2 LEARNING MULTIPLE PERIODIC ATTRACTORS 

[Hop82] showed how to store multiple fixed-point at tractors in a recurrent net. 
[Bai91] can store periodic and chaotic at tractors by inverting the normal forms of 
these attractors into higher order recurrent networks. However, traditional recurrent 
training offers no obvious method of training multiple attractors. [DY89] were able 



Phase.Space Learning 

'I'---:.ru"='"""--'O~--:O-=-" ---! 

A 

.I'--::.ru-;---;;--;;-:Oj---! 

8 

100 1OO 300 400 

D 

.ru 0 OJ 

E 

487 

_.0.1. Il.6, 0.63. 0.7 

'1'--::4U~-::-0 --;Oj~-! 

F 

1.--------, 

~~ 
.1 0 50 100 150 1OO ~ 300 

H 

Figure 7: Learning mUltiple attractors. In each case, a 2-20-20-2 network using 
conjugate gradient is used. Learning 4 attractors: (A) Training set. (B) Eight 
trajectories of the trained network. (C) Induced vector field of the network. There 
are five unstable fixed points. (D) State space behavior as the network is "bumped" 
between attractors. Learning 2 attractors, one inside the other: (E) Training set. 
(F) Four trajectories ofthe trained network. (G) Induced vector field of the network. 
There is an unstable limit cycle between the two stable ones. (H) State space 
behavior with a "bump". 

to store two limit cycles by starting with fixed points stored in a Hopfield net, and 
training each fixed point locally to become a periodic attractor. Our approach has 
no difficulty with multiple attractors. Figure 7 (A-D) shows the result of training 
four coexisting periodic attractors, one in each quadrant of the two-dimensional 
phase space. The network will remain in one of the attractor basins until an external 
force pushes it into another attractor basin. Figure 7 (E-H) shows a network with 
two periodic attractors, this time one inside the other. This vector field possess 
an unstable limit cycle between the two stable limit cycles. This is a more difficult 
task, requiring 40 hidden units, whereas 20 suffice for the previous task (not shown). 

5 SUMMARY 

We have presented a phase space view of the learning process in recurrent nets. 
This perspective has helped us to understand and overcome some of the problems 
of using traditional recurrent methods for learning periodic and chaotic attractors. 
Our method can learn multiple trajectories, explicitly insure their stability, and 
avoid overfitting; in short, we provide a practical approach to learning complicated 
temporal behaviors. The phase-space framework essentially breaks the problem 
into three sub-problems: (1) Embedding a temporal signal to recover its phase 
space structure, (2) generating local approximations of the vector field near the 
desired trajectory, and (3) functional approximation in feedforward networks. We 
have demonstrated that using this method, networks can learn complex oscillations 
and multiple periodic attractors. 
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