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Abstract 

Many different discrete-time recurrent neural network architec­
tures have been proposed. However, there has been virtually no 
effort to compare these arch:tectures experimentally. In this paper 
we review and categorize many of these architectures and compare 
how they perform on various classes of simple problems including 
grammatical inference and nonlinear system identification. 

1 Introduction 

In the past few years several recurrent neural network architectures have emerged. 
In this paper we categorize various discrete-time recurrent neural network architec­
tures, and perform a quantitative comparison of these architectures on two prob­
lems: grammatical inference and nonlinear system identification. 

2 RNN Architectures 

We broadly divide these networks into two groups depending on whether or not the 
states of the network are guaranteed to be observable. A network with observable 
states has the property that the states of the system can always be determined from 
observations of the input and output alone. The archetypical model in this class 
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Table 1: Terms that are weighted in various single layer network architectures. Ui 
represents the ith input at the current time step, Zi represents the value of the lh 
node at the previous time step. 

Architecture bias Ui Zi UiUj ZiUj ZiZj 
First order x x x 
High order x 

Bilinear x x x 
Quadratic x x x x x x 

was proposed by N arendra and Parthasarathy [9]. In their most general model, the 
output of the network is computed by a multilayer perceptron (MLP) whose inputs 
are a window of past inputs and outputs, as shown in Figure la. A special case of 
this network is the Time Delay Neural Network (TDNN), which is simply a tapped 
delay line (TDL) followed by an MLP [7]. This network is not recurrent since there 
is no feedback; however, the TDL does provide a simple form of dynamics that 
gives the network the ability model a limited class of nonlinear dynamic systems. 
A variation on the TDNN, called the Gamma network, has been proposed in which 
the TDL is replaced by a set of cascaded filters [2]. Specifically, if the output of 
one of the filters is denoted xj(k), and the output of filter i connects to the input 
of filter j, the output of filter j is given by, 

xj(k + 1) = I-'xi(k) + (l-I-')xj(k). 
In this paper we only consider the case where I-' is fixed, although better results can 
be obtained if it is adaptive. 

Networks that have hidden dynamics have states which are not directly accessible 
to observation. In fact, it may be impossible to determine the states of a system 
from observations of it's inputs and outputs alone. We divide networks with hid­
den dynamics into three classes: single layer networks, multilayer networks, and 
networks with local feedback. 

Single layer networks are perhaps the most popular of the recurrent neural network 
models. In a single layer network, every node depends on the previous output of 
all of the other nodes. The function performed by each node distinguishes the 
types of recurrent networks in this class. In each of the networks, nodes can be 
characterized as a nonlinear function of a weighted sum of inputs, previous node 
outputs, or products of these values. A bias term may also be included. In this 
paper we consider first-order networks, high-order networks [5], bilinear networks, 
and Quadratic networks[12]. The terms that are weighted in each of these networks 
are summarized in Table 1. 

Multilayer networks consist of a feedforward network coupled with a finite set of 
delays as shown in Figure lb. One network in this class is an architecture proposed 
by Robinson and Fallside [11], in which the feedforward network is an MLP. Another 
popular networks that fits into this class is Elman's Simple Recurrent Network 
(SRN) [3]. An Elman network can be thought of as a single layer network with an 
extra layer of nodes that compute the output function, as shown in Figure lc. 

In locally recurrent networks the feedback is provided locally within each individual 
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MLP 

Figure 1: Network architectures: (a) Narendra and Parthasarathy's Recurrent Neu­
ral Network, (b) Multilayer network and (c) an Elman network. 

node, but the nodes are connected together in a feed forward architecture. Specifi­
cally, we consider nodes that have local output feedback in which each node weights 
a window of its own past outputs and windows of node outputs from previous layers. 
Networks with local recurrence have been proposed in [1, 4, 10]. 

3 Experimental Results 

3.1 Experimental methodology 

In order to make the comparison as fair as possible we have adopted the following 
methodology. 

• Resources. We shall perform two fundamental comparisons. One in which the 
number of weights is roughly the same for all networks, another in which the 
number of states is equivalent. In either case, we shall make these numbers large 
enough that most of the networks can achieve interesting performance levels. 

Number of weights. For static networks it is well known that the generalization 
performance is related to the number of weights in the network. Although this 
theory has never been extended to recurrent neural networks, it seems reasonable 
that a similar result might apply. Therefore, in some experiments we shall try 
to keep the number of weights approximately equal across all networks. 
Number of states. It can be argued that for dynamic problems the size of the 
state space is a more relevant measure for comparison than the number of 
weights. Therefore, in some experiments we shall keep the number of states 
equal across all networks. 

• Vanilla learning. Several heuristics have been proposed to help speed learning 
and improve generalization of gradient descent learning algorithms. However, 
such heuristics may favor certain architectures. In order to avoid these issues, 
we have chosen simple gradient descent learning algorithms. 

• Number of simulations. Due to random initial conditions, the recurrent 
neural network solutions can vary widely. Thus, to try to achieve a statistically 
significant estimation of the generalization of these networks, a large number of 
experiments were run. 



700 Bill G. Horne, C. Lee Giles 

o 

stan );::===:====,O'l+------ll 
o 

o 

Figure 2: A randomly generated six state finite state machine. 

3.2 Finite state machines 

We chose two finite state machine (FSM) problems for a comparison of the ability of 
the various recurrent networks to perform grammatical inference. The first problem 
is to learn the minimal, randomly generated six state machine shown in Figure 2. 
The second problem is to infer a sixty-four state finite memory machine [6] described 
by the logic function 

y(k) = u(k - 3)u(k) + u(k - 3)y(k - 3) + u(k)u(k - 3)Y(k - 3) 

where u(k) and y(k) represent the input and output respectively at time k and x 
represents the complement of x. 

Two experiments were run. In the first experiment all of the networks were designed 
such that the number of weights was less than, but as close to 60 as possible. In the 
second experiment, each network was restricted to six state variables, and if possible, 
the networks were designed to have approximately 75 weights. Several alternative 
architectures were tried when it was possible to configure the architecture differently 
and yield the same number of weights, but those used gave the best results. 

A complete set of 254 strings consisting of all strings of length one through seven is 
sufficient to uniquely identify both ofthese FSMs. For each simulation, we randomly 
partitioned the data into a training and testing set consisting of 127 strings each. 
The strings were ordered lexographically in the training set. 

For each architecture 100 runs were performed on each problem. The on-line Back 
Propagation Through Time (BPTT) algorithm was used to train the networks. 
Vanilla learning was used with a learning rate of 0.5. Training was stopped at 1000 
epochs. The weights of all networks were initialized to random values uniformly 
distributed in the range [-0.1,0.1]. All states were initialize to zeros at the begin­
ning of each string except for the High Order net in which one state was arbitrarily 
initialized to a value of 1. 

Table 2 summarizes the statistics for each experiment. From these results we draw 
the following conclusions. 

• The bilinear and high-order networks do best on the small randomly generated 
machine, but poorly on the finite memory machine. Thus, it would appear that 
there is benefit to having second order terms in the network, at least for small 
finite state machine problems. 

• N arendra and Parthasarathy's model and the network with local recurrence do 
far better than the other networks on the problem of inferring the finite memory 
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Table 2: Percentage classification error on the FSM experiment for (a) networks with 
approximately the same number of weights, (b) networks with the same number of 
state variables. %P = The percentage of trials in which the training set was learned 
perfectly, #W = the number of weights, and #S = the number of states. 

training error testing error 
F5M Architecture t mean ( std) mea.n (std) 'YoP #W #5 

N&P 2.8 (M) 16.9 (8 .6) 22 56 8 
TDNN 12.5 (2.1) 33.8 (U) 0 56 8 
Gamma 19.6 (H) 24.8 (3 .2) 0 56 8 
First Order 12.9 (6.9) 26.5 (9 .0) 0 48 6 

RND High Order 0.8 (1.5) 6 .2 (6 .1 ) 60 50 5 
Bilinear 1.3 (2 .7) 5 .7 (6 .1) 46 55 5 
Quadratic 12.9 (13.4) 17.7 (14.1) 12 45 3 
Mullilayer 19 .4 (13 .6) 23.4 ( 13.5) 6 54 4 
Elman 3 .5 ~5.~~ 12.7 ~9 . !~ 27 55 6 
Local 2.8 1.5 26.7 7.6 4 60 20 

N&P 0 .0 ~0 . 2 ~ 0 .1 ~ 1 . ~ ~ 99 56 8 
TDNN 6.9 (2 .1 ) 15 .8 (3 .2) 0 56 8 
Gamma 7.7 (2 .2) 15.7 (3.3) 0 56 8 
First Order 4 .8 (3 .0) 16 .0 (6 .5) 1 48 6 

FMM High Order 5.3 (4.0) 26 .0 ( 5. 1 ) 1 50 5 
Bilinear 9 .5 (10 .4) 25.8 (7 .0) 0 55 5 
Quadratic 32.5 (10.8) 40.5 (7 .3) 0 45 3 
Multilayer 36.7 (11.9) 43 .5 (8.5) 0 54 4 
Elman 12.0 (12.5) 24 .9 (7 .9) 5 55 6 
Local 0 . 1 ' (0.3) 1.0 ( 3 .0) 97 60 20 

(a) 
tra.lnlng error testIng error 

F5M Architecture tt mea.n ( std) mea.n ( std) 'YoP #W #5 
N&P 4.6 ( 8.~~ 14.1 (11 .3 ) 38 73 6 
TDNN 11 .7 ( 2.0) 34.3 ( 3 .9) 0 73 6 
Gamma 19.0 (H) 25 .2 (3.1) 0 H 6 
First Order 12.9 ( 6.9) 26.5 (9 .0) 0 48 6 

RND High Order 0 .3 ( 0 .5) 4 .6 ( 5 .1) 79 H 6 
Bilinear 0 .6 ( 0 .9) 4 .4 ( U) 55 78 6 
Quadratic 0 .2 ( 0 .5) 3.2 ( 2 .6) 83 216 6 
Mullilayer 15.4 (14 .1) 19.9 (lU) 16 76 6 
Elman 3.5 ( 5.5) 12.7 ( 9 .1) 27 55 6 
Local 13.9 ( 405) 20.2 ( 5.7) 0 26 6 

N&P 0 .1 ( 0 .8) 0 .3 ( 1.4) 97 73 6 
TDNN 6 .8 ( 1.7) 16.2 ( 2 .9) 0 73 6 
Gamma 9 .0 (2.9) 14.9 (2 .8) 0 73 6 
Firs t Order 4 .8 (3 .0) 16.0 (6 .5) 1 48 6 

FMM High Order 1.2 ( 1.7) 25.1 ( 5 .1) 31 H 6 
Bilinear 2 .6 ( 402) 20.3 ( 7 .2) 21 78 6 
Quadratic 12.6 (17.3) 26.1 (12 .8) 13 216 6 
MullUayer 38.1 (12.6) 42.8 ( 9.2) 0 76 6 
Elman 12.8 ~H.:~ 27.6 (10 .7) 8 55 6 
Local 15 .3 3 .8 22.2 ( 409) 0 26 6 

(b) 

tThe TDNN and Gamma network both had 8 input taps and 4 hidden layer nodes. For 
the Gamma network, I' = 0.3 (RND) and I' = 0.7 (FMM). Narendra and Parthasarathy's 
network had 4 input and output taps and 5 hidden layer nodes. The High-order network 
used a "one-hot" encoding of the input values [5]. The multilayer network had 4 hidden 
and output layer nodes. The locally recurrent net had 4 hidden layer nodes with 5 input 
and 3 output taps, and one output node with 3 input and output taps. 

ttThe TDNN, Gamma network, and N arendra and Parthasarathy's network all had 8 
hidden layer nodes. For the Gamma network, I' = 0.3 (RND) and I' = 0.7 (FMM). The 
High-order network again used a "one-hot" encoding of the input values. The multilayer 
network had 5 hidden and 6 output layer nodes. The locally recurrent net had 3 hidden 
layer nodes and one output layer node, all with only one input and output tap. 
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machine when the number of states is not constrained. It is not surprising that 
the former network did so well since the sequential machine implementation of 
a finite memory machine is similar to this architecture [6]. However, the result 
for the locally recurrent network was unexpected. 

• All of the recurrent networks do better than the TDNN on the small random 
machine. However, on the finite memory machine the TDNN does surprisingly 
well, perhaps because its structure is similiar to Narendra and Parthasarathy's 
network which was well suited for this problem. 

• Gradient-based learning algorithms are not adequate for many of these archi­
tectures. In many cases a network is capable of representing a solution to a 
problem that the algorithm was not able to find. This seems particularly true 
for the Multilayer network. 

• Not surprisingly, an increase in the number of weights typically leads to over­
training. Although, the quadratic network, which has 216 weights, can consis­
tently find solutions for the random machine that generalize well even though 
there are only 127 training samples. 

• Although the performance on the training set is not always a good indicator of' 
generalization performance on the testing set, we find that if a network is able 
to frequently find perfect solutions for the training data, then it also does well 
on the testing data. 

3.3 Nonlinear system identification 

In this problem, we train the network to learn the dynamics of the following set of 
equations proposed in [8] 

zl(k) + 2z2(k) (k) 
zl(k+l) l+z~(k) +u 

(k) zl(k)Z2(k) (k) 
Z2 + 1 = + u 

1 + z~(k) 
y(k) zl(k) + z2(k) 

based on observations of u( k) and y( k) alone. 

The same networks that were used for the finite state machine problems were used 
here, except that the output node was changed to be linear instead of sigmoidal 
to allow the network to have an appropriate dynamic range. We found that this 
caused some stability problems in the quadratic and locally recurrent networks. For 
the fixed number of weights comparison, we added an extra node to the quadratic 
network, and dropped any second order terms involving the fed back output. This 
gave a network with 64 weights and 4 states. For the fixed state comparison, 
dropping the second order terms gave a network with 174 weights. The locally 
recurrent network presented stability problems only for the fixed number of weights 
comparison. Here, we used a network that had 6 hidden layer nodes and one output 
node with 2 taps on the inputs and outputs each, giving a network with 57 weights 
and 16 states. In the Gamma network a value of l' = 0.8 gave the best results. 

The networks were trained with 100 uniform random noise sequences of length 50. 
Each experiment used a different randomly generated training set. The noise was 
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Table 3: Normalized mean squared error on a sinusoidal test signal for the nonlinear 
system identification experiment. 

Archi teet ure Fixed # weights Fixed # states 
N&P 0.101 0.067 
TDNN 0.160 0.165 
Gamma 0.157 0.151 
First Order 0.105 0.105 
High Order 1.034 1.050 
Bilinear 0.118 0.111 
Quadratic 0.108 0.096 
Multilayer 0.096 0.084 
Elman 0.115 0.115 
Local 0.117 0.123 

uniformly distributed in the range [-2.0,2.0], and each sequence started with an 
initial value of Xl(O) = X2(0) = O. The networks were tested on the response to 
a sine wave of frequency 0.04 radians/second. This is an interesting test signal 
because it is fundamentally different than the training data. 

Fifty runs were performed for each network. BPTT was used for 500 epochs with a 
learning rate of 0.002. The weights of all networks were initialized to random values 
uniformly distributed in the range [-0.1,0.1]. 

Table 3 shows the normalized mean squared error averaged over the 50 runs on the 
testing set. From these results we draw the following conclusions. 

• The high order network could not seem to match the dynamic range of its output 
to the target, as a result it performed much worse than the other networks. It is 
clear that there is benefit to adding first order terms since the bilinear network 
performed so much better. 

• Aside from the high order network, all of the other recurrent networks performed 
better than the TDNN, although in most cases not significantly better. 

• The multilayer network performed exceptionally well on this problem, unlike the 
finite state machine experiments. We speculate that the existence of target out­
put at every point along the sequence (unlike the finite state machine problems) 
is important for the multilayer network to be successful. 

• Narendra and Parthasarathy's architecture did exceptionally well, even though 
it is not clear that its structure is well matched to the problem. 

4 Conclusions 

We have reviewed many discrete-time recurrent neural network architectures and 
compared them on two different problem domains, although we make no claim that 
any of these results will necessarily extend to other problems. 

Narendra and Parthasarathy's model performed exceptionally well on the problems 
we explored. In general, single layer networks did fairly well, however it is important 
to include terms besides simple state/input products for nonlinear system identi­
fication. All of the recurrent networks usually did better than the TDNN except 
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on the finite memory machine problem. In these experiments, the use of averaging 
filters as a substitute for taps in the TDNN did not seem to offer any distinct ad­
vantages in performance, although better results might be obtained if the value of 
J.I. is adapted. 

We found that the relative comparison of the networks did not significantly change 
whether or not the number of weights or states were held constant. In fact, holding 
one of these values constant meant that in some networks the other value varied 
wildly, yet there appeared to be little correlation with generalization. 

Finally, it is interesting to note that though some are much better than others, 
many of these networks are capable of providing adequate solutions to two seemingly 
disparate problems. 
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