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Abstract 

Simard, LeCun & Denker (1993) showed that the performance of 
nearest-neighbor classification schemes for handwritten character 
recognition can be improved by incorporating invariance to spe­
cific transformations in the underlying distance metric - the so 
called tangent distance. The resulting classifier, however, can be 
prohibitively slow and memory intensive due to the large amount of 
prototypes that need to be stored and used in the distance compar­
isons. In this paper we develop rich models for representing large 
subsets of the prototypes. These models are either used singly per 
class, or as basic building blocks in conjunction with the K-means 
clustering algorithm. 

*This work was performed while Trevor Hastie was a member of the Statistics and Data 
Analysis Research Group, AT&T Bell Laboratories, Murray Hill, NJ 07974. 
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1 INTRODUCTION 

Local algorithms such as K-nearest neighbor (NN) perform well in pattern recogni­
tion, even though they often assume the simplest distance on the pattern space. It 
has recently been shown (Simard et al. 1993) that the performance can be further 
improved by incorporating invariance to specific transformations in the underlying 
distance metric - the so called tangent distance. The resulting classifier, how­
ever, can be prohibitively slow and memory intensive due to the large amount of 
prototypes that need to be stored and used in the distance comparisons. 

In this paper we address this problem for the tangent distance algorithm, by de­
veloping rich models for representing large subsets of the prototypes. Our leading 
example of prototype model is a low-dimensional (12) hyperplane defined by a point 
and a set of basis or tangent vectors. The components of these models are learned 
from the training set, chosen to minimize the average tangent distance from a subset 
of the training images - as such they are similar in flavor to the Singular Value De­
composition (SVD), which finds closest hyperplanes in Euclidean distance. These 
models are either used singly per class, or as basic building blocks in conjunction 
with K-means and LVQ. Our results show that not only are the models effective, 
but they also have meaningful interpretations. In handwritten character recogni­
tion, for instance, the main tangent vector learned for the the digit "2" corresponds 
to addition/removal of the loop at the bottom left corner of the digit; for the 9 the 
fatness of the circle. We can therefore think of some of these learned tangent vectors 
as representing additional invariances derived from the training digits themselves. 
Each learned prototype model therefore represents very compactly a large number 
of prototypes of the training set. 

2 OVERVIEW OF TANGENT DISTANCE 

When we look at handwritten characters, we are easily able to allow for simple trans­
formations such as rotations, small scalings, location shifts, and character thickness 
w hen identifying the character. Any reasonable automatic scheme should similarly 
be insensitive to such changes. 

Simard et al. (1993) finessed this problem by generating a parametrized 7-
dimensional manifold for each image, where each parameter accounts for one 
such invariance. Consider a single invariance dimension: rotation. If we were 
to rotate the image by an angle B prior to digitization, we would see roughly 
the same picture, just slightly rotated. Our images are 16 x 16 grey-scale pix­
elmaps, which can be thought of as points in a 256-dimensional Euclidean space. 
The rotation operation traces out a smooth one-dimensional curve Xi(B) with 
Xi(O) = Xi, the image itself. Instead of measuring the distance between two im­
ages as D(Xi,Xj) = IIXi - Xjll (for any norm 11·11), the idea is to use instead the 
rotation-invariant DI (Xi, Xj) = minoi,oj IIX i(B;) - Xj(Bj )11. Simard et al. (1993) 
used 7 dimensions of invariance, accounting fo:: horizontal and vertical location and 
scale, rotation and shear and character thickness. 

Computing the manifold exactly is impossible, given a digitized image, and would 
be impractical anyway. They approximated the manifold instead by its tangent 
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plane at the image itself, leading to the tangent model Xi(B) = Xi + TiB, and the 

tangent distance DT(Xi,Xj) = minoi,oj IIXi(Bd -Xj(Bj)ll. Here we use B for the 
7-dimensional parameter, and for convenience drop the tilde. The approximation 
is valid locally, and thus permits local transformations. Non-local transformations 
are not interesting anyway (we don't want to flip 6s into 9s; shrink all digits down 
to nothing.) See Sackinger (1992) for further details. If 11·11 is the Euclidean norm, 
computing the tangent distance is a simple least-squares problem, with solution the 
square-root of the residual sum-of-squares of the residuals in the regression with 
response Xi - Xj and predictors (-Ti : Tj ). 

Simard et al. (1993) used DT to drive a 1-NN classification rule, and achieved 
the best rates so far-2.6%-on the official test set (2007 examples) of the USPS 
data base. Unfortunately, 1-NN is expensive, especially when the distance function 
is non-trivial to compute; for each new image classified, one has to compute the 
tangent distance to each of the training images, and then classify as the class of 
the closest. Our goal in this paper is to reduce the training set dramatically to a 
small set of prototype models; classification is then performed by finding the closest 
prototype. 

3 PROTOTYPE MODELS 

In this section we explore some ideas for generalizing the concept of a mean or 
centroid for a set of images, taking into account the tangent families. Such a 
centroid model can be used on its own, or else as a building block in a K-means 
or LVQ algorithm at a higher level. We will interchangeably refer to the images as 
points (in 256 space). 

The centroid of a set of N points in d dimensions minimizes the average squared 
norm from the points: 

(1) 

3.1 TANGENT CENTROID 

One could generalize this definition and ask for the point M that minimizes the 
average squared tangent distance: 

N 

MT = argm,Jn LDT(Xi,M)2 (2) 
i=l 

This appears to be a difficult optimization problem, since computation of tangent 
distance requires not only the image M but also its tangent basis TM. Thus the 
criterion to be minimized is 
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where T(M) produces the tangent basis from M. All but the location tangent 
vectors are nonlinear functionals of M, and even without this nonlinearity, the 
problem to be solved is a difficult inverse functional. Fortunately a simple iterative 
procedure is available where we iteratively average the closest points (in tangent 
distance) to the current guess. 

Tangent Centroid Algorithm 

Initialize: Set M = ~ 2:~1 Xi, let TM = T(M) be the derived 
set of tangent vectors, and D = 2:i DT(Xi' M). Denote 
the current tangent centroid (tangent family) by M(-y) = 
M +TM"I. 

Iterate: 1. For each i find a 1'. and 8i that solves 
11M + TM"I - Xi(8)11 = min'Y.9 

1 N A 

2. Set M +- N 2:'=1 (Xi(8i ) - TMi'i) and compute the 
new tangent subspace TM = T(M). 

3. Compute D = 2:iDT(Xi,M) 

Until: D converges. 

Note that the first step in Iterate is available from the computations in the third 
step. The algorithm divides the parameters into two sets: M in the one, and then 
TM, "Ii and 8, for each i in the other. It alternates between the two sets, although 
the computation of TM given M is not the solution of an optimization problem. 
It seems very hard to say anything precise about the convergence or behavior of 
this algorithm, since the tangent vectors depend on each iterate in a nonlinear way. 
Our experience has always been that it converges fairly rapidly « 6 iterations). A 
potential drawback of this algorithm is that the TM are not learned, but are implicit 
in M. 

3.2 TANGENT SUBSPACE 

Rather than define the model as a point and have it generate its own tangent 
subspace, we can include the subspace as part of the parametrization: M(-y) = 
M + V"I. Then we define this tangent subspace model as the minimizer of 

N 

MS(M, V) = L min 11M + V"Ii - Xi(8d1l 2 

. 1 'Yi. 9i 
t= 

(3) 

over M and V. Note that V can have an arbitrary number 0 ::; r ::; 256 of columns, 
although it does not make sense for r to be too large. An iterative algorithm 
similar to the tangent centroid algorithm is available, which hinges on the SVD 
decomposition for fitting affine subspaces to a set of points. We briefly review the 
SVD in this context. 

Let X be the N x 256 matrix with rows the vectors Xi - X where X = ~ 2:~1 Xi. 
Then SVD(X) = UDVT is a unique decomposition with UNxR and V256xR the 
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orthonormal left and right matrices of singular vectors, and R = rank( X). D Rx R 

is a diagonal matrix of decreasing positive singular values. A pertinent property of 
the SVD is: 

Consider finding the closest affine, rank-r subspace to a set of 
points, or 

N 2 

min 2: IIXi -M - v(r)'hll 
M,v(r),{9i} i=1 

where v(r) is 256 x r orthonormal. The solution is given by the 
SVD above, with M = X and v(r) the first r columns of V, and 
the total squared distance E;=1 D;j. 

The V( r) are also the largest r principal components or eigenvectors of the covariance 
matrix of the Xi. They give in sequence directions of maximum spread, and for a 
given digit class can be thought of as class specific invariances. 

We now present our Tangent subspace algorithm for solving (3); for convenience we 
assume V is rank r for some chosen r, and drop the superscript. 

Tangent subspace algorithm 

Initialize: Set M = ~ Ef:l Xi and let V correspond to the first 
r right singular vectors of X. Set D = E;=1 D;j, and let 
the current tangent subspace model be M(-y) = M + V-y. 

Iterate: 1. For each i find that (ji which solves 
IIM(-y) - Xi (8)11 = min 

N A 

2. Set M +- ~ Ei=1 (Xi (8 i )) and replace the rows of X 
by Xi({jd - M. Compute the SVD of X, and replace 
V by the first r right singular vectors. 

3. Compute D = E;=l D;j 

Until: D converges. 

The algorithm alternates between i) finding the closest point in the tangent subspace 
for each image to the current tangent subspace model, and ii) computing the SVD 
for these closest points. Each step of the alternation decreases the criterion, which 
is positive and hence converges to a stationary point of the criterion. In all our 
examples we found that 12 complete iterations were sufficient to achieve a relative 
convergence ratio of 0.001. 

One advantage of this approach is that we need not restrict ourselves to a seven­
dimensional V - indeed, we have found 12 dimensions has produced the best 
results . The basis vectors found for each class are interesting to view as images. 
Figure 1 shows some examples of the basis vectors found, and what kinds of invari­
ances in the images they account for. These are digit specific features; for example, 
a prominent basis vector for the family of 2s accounts for big versus small loops. 
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Each of the examples shown accounts for a similar digit specific invariance. None of 
these changes are accounted for by the 7-dimensional tangent models, which were 
chosen to be digit nonspecific. 

Figure 1: Each column corresponds to a particular tangent subspace basis vector for the 
given digit . The top image is the basis vector itself, and the remaining 3 images correspond 
to the 0.1 , 0.5 and 0.9 quantiles for the projection indices for the training data for that 
basis vector, showing a range of image models for that basis, keeping all the others at o. 

4 SUBSPACE MODELS AND K-MEANS CLUSTERING 

A natural and obvious extension of these single prototype-per-class models, is to 
use them as centroid modules in a K-means algorithm. The extension is obvious, 
and space permits only a rough description. Given an initial partition of the images 
in a class into K sets: 

1. Fit a separate prototype model to each of the subsets; 

2. Redefine the partition based on closest tangent distance to the prototypes 
found in step 1. 

In a similar way the tangent centroid or subspace models can be used to seed LVQ 
algorithms (Kohonen 1989), but so far we have not much experience with them. 

5 RESULTS 

Table 1 summarizes the results for some of these models . The first two lines corre­
spond to a SVD model for the images fit by ordinary least squares rather than least 
tangent squares. The first line classifies using Euclidean distance to this model, the 
second using tangent distance. Line 3 fits a single 12-dimensional tangent subspace 
model per class, while lines 4 and 5 use 12-dimensional tangent subspaces as cluster 
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Table 1: Test errors for a variety of situations. In all cases the training data were 7291 
USPS handwritten digits, and the test data the "official" 2007 USPS test digits. Each 
entry describes the model used in each class, so for example in row 5 there are 5 models 
per class, hence 50 in all. 

Prototype Metric # Prototypes7Class Error Rate 
0 1-NN Euclidean ~ 700 0.053 
1 12 dim SVD subspace Euclidean 1 0.055 
2 12 dim SVD subspace Tangent 1 0.045 
3 12 dim Tangent subspace Tangent 1 0.041 
4 12 dim Tangent subspace Tangent 3 0.038 
5 12 dim Tangent subspace Tangent 5 0.038 
6 Tangent centroid Tangent 20 0.038 
7 (4) U (6) Tangent 23 0.034 
8 1-NN Tangent ~ 700 0.026 

centers within each class. We tried other dimensions in a variety of settings, but 
12 seemed to be generally the best. Line 6 corresponds to the tangent centroid 
model used as the centroid in a 20-means cluster model per class; the performance 
compares with with K=3 for the subspace model. Line 7 combines 4 and 6, and 
reduces the error even further. These limited experiments suggest that the tangent 
subspace model is preferable, since it is more compact and the algorithm for fitting 
it is on firmer theoretical grounds. 

Figure 4 shows some of the misclassified examples in the test set. Despite all the 
matching, it seems that Euclidean distance still fails us in the end in some of these 
cases. 

6 DISCUSSION 

Gold, Mjolsness & Rangarajan (1994) independently had the idea of using "domain 
specific" distance measures to seed K-means clustering algorithms. Their setting 
was slightly different from ours, and they did not use subspace models. The idea of 
classifying points to the closest subspace is found in the work of Oja (1989), but of 
course not in the context of tangent distance. 

We are using Euclidean distance in conjunction with tangent distance. Since neigh­
boring pixels are correlated, one might expect that a metric that accounted for the 
correlation might do better. We tried several variants using Mahalanobis metrics 
in different ways, but with no success. We also tried to incorporate information 
about where the images project in the tangent subspace models into the classifica­
tion rule. We thus computed two distances: 1) tangent distance to the subspace, 
and 2) Mahalanobis distance within the subspace to the centroid for the subspace. 
Again the best performance was attained by ignoring the latter distance. 

In conclusion, learning tangent centroid and subspace models is an effective way 
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true: 6 true: 2 true: 5 true: 2 true: 9 true: 4 

pred. pro). ( 0 ) prado proj. ( 0 ) pred. pro). ( 8 ) pred. proj. ( 0 ) prado proj. ( 4 ) prado pro). ( 7 ) 

Figure 2: Some of the errorS for the test set corresponding to line (3) of table 4. Each 
case is displayed as a column of three images. The top is the true image, the middle the 
tangent projection of the true image onto the subspace model of its class, the bottom image 
the tangent projection of the image onto the winning class . The models are sufficiently 
rich to allow distortions that can fool Euclidean distance. 

to reduce the number of prototypes (and thus the cost in speed and memory) at a 
slight expense in the performance. In the extreme case, as little as one 12 dimen­
sional tangent subspace per class and the tangent distance is enough to outperform 
classification using ~ 700 prototypes per class and the Euclidean distance (4.1 % 
versus 5.3% on the test data). 

References 

Gold, S., Mjolsness, E. & Rangarajan, A. (1994), Clustering with a domain specific 
distance measure, in 'Advances in Neural Information Processing Systems', 
Morgan Kaufman, San Mateo, CA. 

Kohonen, T. (1989), Self-Organization and Associative Memory (3rd edition), 
Springer-Verlag, Berlin. 

Oja, E. (1989), 'Neural networks, principal components, and subspaces', Interna­
tional Journal Of Neural Systems 1(1), 61-68. 

Sackinger, E. (1992), Recurrent networks for elastic matching in pattern recognition, 
Technical report, AT&T Bell Laboratories. 

Simard, P. Y, LeCun, Y. & Denker, J. (1993), Efficient pattern recognition using 
a new transformation distance, in 'Advances in Neural Information Processing 
Systems', Morgan Kaufman, San Mateo, CA, pp. 50-58. 


