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Abstract 

This paper studies the problem of diffusion in Markovian models, 
such as hidden Markov models (HMMs) and how it makes very 
difficult the task of learning of long-term dependencies in sequences. 
Using results from Markov chain theory, we show that the problem 
of diffusion is reduced if the transition probabilities approach 0 or 1. 
Under this condition, standard HMMs have very limited modeling 
capabilities, but input/output HMMs can still perform interesting 
computations. 

1 Introduction 

This paper presents an important new element in our research on the problem of 
learning long-term dependencies in sequences. In our previous work [4J we found 
theoretical reasons for the difficulty in training recurrent networks (or more gen­
erally parametric non-linear dynamical systems) to learn long-term dependencies. 
The main result stated that either long-term storing or gradient propagation would 
be harmed, depending on whether the norm of the Jacobian of the state to state 
function was greater or less than 1. In this paper we consider a special case in which 
the norm of the Jacobian of the state to state function is constrained to be exactly 
1 because this matrix is a stochastic matrix. 

We consider both homogeneous and non-homogeneous Markovian models. Let n 
be the number of states and At be the transition matrices (constant in the ho­
mogeneous case): Aij(ut} = P(qt = j I qt-l = i, Ut; e) where Ut is an external 
input (constant in the homogeneous case) and e is a vector of parameters. In 
the homogeneous case (e.g., standard HMMs), such models can learn the distribu­
tion of output sequences by associating an output distribution to each state. In 
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the non-homogeneous case, transition and output distributions are conditional on 
the input sequences, allowing to model relationships between input and output se­
quences (e.g. to do sequence 'regression or classification as with recurrent networks). 
We thus called Input/Output HMM (IOHMM) this kind of non-homogeneous 
HMM . In [3, 2] we proposed a connectionist implementation of IOHMMs. In both 
cases, training requires propagating forward probabilities and backward probabili­
ties, taking products with the transition probability matrix or its transpose. This 
paper studies in which conditions these products of matrices might gradually 
converge to lower rank, thus harming storage and learning of long-term context. 
However, we find in this paper that IOHMMs can better deal with this problem 
than homogeneous HMMs. 

2 Mathematical Preliminaries 

2.1 Definitions 

A matrix A is said to be non-negative, written A 2:: 0, if Aij 2:: 0 Vi, j . Positive 
matrices are defined similarly. A non-negative square matrix A E R nxn is called 
row stochastic (or simply stochastic in this paper) if 'L,'l=1 Aij = 1 Vi = 1 . . . n. 
A non-negative matrix is said to be row [column} allowable if every row [column] 
sum is positive. An allowable matrix is both row and column allowable. A non­
negative matrix can be associated to the directed transition graph 9 that constrains 
the Markov chain. An incidence matrix A corresponding to a given non-negative 
matrix A replaces all positive entries of A by 1. The incidence matrix of A is a 
connectivity matrix corresponding to the graph 9 (assumed to be connected here). 
Some algebraic properties of A are described in terms of the topology of g. 
Definition 1 (Irreducible Matrix) A non-negative n x n matrix A is said to be 
irreducible if for every pair i,j of indices, :3 m = m(i,j) positive integer s.t. 
(Amhj > O. 

A matrix A is irreducible if and only if the associated graph is strongly connected 
(i.e., there exists a path between any pair of states i,j) . If :3k s.t . (Ak)ii > 0, d(i) 
is called the period of index i ifit is the greatest common divisor (g .c.d.) of those k 
for which (Ak)ii > O. In an irreducible matrix all the indices have the same period 
d, which is called the period of the matrix. The period of a matrix is the g .c.d. of 
the lengths of all cycles in the associated transition graph. 

Definition 2 (Primitive matrix) A non-negative matrix A is said to be primitive 
if there exists a positive integer k S.t. Ak > O. 

An irreducible matrix is either periodic or primitive (i.e. of period 1). A primitive 
stochastic matrix is necessarily allowable. 

2.2 The Perron-Frobenius Theorem 

Theorem 1 (See [6], Theorem 1.1.) Suppose A is an n x n non-negative prim­
itive matrix. Then there exists an eigenvalue r such that: 

1. r is real and positive; 

2. with r can be associated strictly positive left and right eigenvectors; 

3. r> 1>'1 for any eigenvalue>. 1= r; 
4· the eigenvectors associated with r are unique to constant multiples. 

5. If 0 S B s A and f3 is an eigenvalue of B, then 1f31 s r . Moreover, 1f31 = r 
implies B = A. 
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6. r is simple root of the characteristic equation of A. 
A simple consequence of the theorem for stochastic matrices is the following: 
Corollary 1 Suppose A is a primitive stochastic matrix. Then its largest eigeh­
value is 1 and there is only one corresponding right eigenvector, which is 1 = 
[1, 1 .. ·1]'. Furthermore, all other eigenvalues < 1. 
Proof. A1 = 1 by definition of stochastic matrices. This eigenvector is unique 
and all other eigenvalues < 1 by the Perron-Frobenius Theorem. 

If A is stochastic but periodic with period d, then A has d eigenvalues of module 1 
which are the d complex roots of 1. 

3 Learning Long-Term Dependencies with HMMs 

In this section we analyze the case of a primitive transition matrix as well as the 
general case with a canonical re-ordering of the matrix indices. We discuss how 
ergodicity coefficients can be used to measure the difficulty in learning long-term 
dependencies. Finally, we find that in order to avoid all diffusion, the transitions 
should be deterministic (0 or 1 probability). 

3.1 Training Standard HMMs 

Theorem 2 (See [6], Theorem 4.2.) If A is a primitive stochastic matrix, then 
as t -+ 00, At -+ 1V' where v' is the unique stationary distribution of the Markov 
chain. The rate of approach is geometric. 

Thus if A is primitive, then liIDt-+oo At converges to a matrix whose eigenvalues are 
all 0 except for ,\ = 1 (with eigenvector 1), i.e. the rank of this product converges 
to 1, i.e. its rows are equal. A consequence oftheorem 2 is that it is very difficult to 
train ordinary hidden Markov models, with a primitive transition matrix, to model 
long-term dependencies in observed sequences. The reason is that the distribution 
over the states at time t > to becomes gradually independent of the distribution over 
the states at time to as t increases. It means that states at time to become equally 
responsible for increasing the likelihood of an output at time t. This corresponds in 
the backward phase of the EM algorithm for trainin~ HMMs to a diffusion of credit 
over all the states. In practice we train HMMs WIth finite sequences. However , 
training will become more and more numerically ill-conditioned as one considers 
longer term dependencies. Consider two events eo (occurring at to) and et (occur­
ring at t), and suppose there are also "interesting" events occurring in between. Let 
us consider the overall influence of states at times 1" < t upon the likelihood of the 
outputs at time t. Because of the phenomenon of diffusion of credit, and because 
gradients are added together, the influence of intervening events (especially those 
occurring shortly before t) will be much stronger than the influence of eo . Fur­
thermore, this problem gets geometrically worse as t increases. Clearly a positive 
matrix is primitive. Thus in order to learn long-term dependencies, we would like 
to have many zeros in the matrix of transition probabilities. Unfortunately, this 
generally supposes prior knowledge of an appropriate connectivity graph . 

3.2 Coefficients of ergodicity 

To study products of non-negative matrices and the loss of information about initial 
state in Markov chains (particularly in the non-homogeneous case), we introduce 
the projective distance between vectors x and y: 

x·y· 
d(x',y') = ~~ In(--.:..l.). 

I ,) XjYi 

Clearly, some contraction takes place when d(x'A,y'A) ::; d(x',y'). 
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Definition 3 BirkhofJ's contraction coefficient TB(A), for a non-negative column­
allowable matrix A, is defined in terms of the projective distance: 

d(x' A, y' A) 
TB(A) = sup 

d(x', y') x ,y> Ojx;t>.y 

Dobrushin's coefficient Tl(A), for a stochastic matrix A, is defined as follows: 

1 
Tl(A) = 2 s~p L laik - ajkl· 

I,) k 

Both are proper ergodicity coefficients: 0 ~ T(A) ~ 1 and T(A) = 0 if and only if A 
has identical rows. Furthermore, T(AIA2) ~ T(Al)T(A2)(see [6]). 

3.3 Products of Stochastic Matrices 

Let A (1 ,t) = A 1A2 ··· At- 1 At denote a forward product of stochastic matrices 
AI, A2, ... At. From the properties of TB and Tl, if T(At} < 1, t > 0 then 
limt-l-oo T(A(l,t») = 0, i.e. A(l,t) has rank 1 and identical rows. Weak ergodic­
ity is then defined in terms of a proper ergodic coefficient T such as TB and Tl: 

Definition 4 (Weak Ergodicity) The products of stochastic matrices A(p,r) are 
weakly ergodic if and only if for all to ~ 0 as t -+ 00, T(A(to,t») -+ O. 

Theorem 3 (See [6], Lemma 3.3 and 3.4.) Let A(l,t) a forward product of 
non-negative and allowable matrices, then the products A(l,t) are weakly ergodic 
if and only if the following conditions both hold: 
1. 3to S.t. A(to,t) > 0 Vt > to 

A(to,t) -

2. A (;~,t) -+ Wij (t) > 0 as t -+ 00, i. e. rows of A (to,t) tend to proportionality. 
),k 

For stochastic matrices, row-proportionality is equivalent to row-equality since rows 
sum to 1. limt-l-oo ACto,t) does not need to exist in order to have weak ergodicity. 

3.4 Canonical Decomposition and Periodic Graphs 

Any non-negative matrix A can be rewritten by relabeling its indices in the following 
canonical decomposition [6], with diagonal blocks B i , C i and Q: 

( 
Bl 0 0 ... 0 

) 
0 B2 0 " . 0 

..... . ..... . . . . . . . . 
A= 0 C'+ 1 0 0 (1 ) 

. . . . . . . . . . .... . .. 
0 0 Cr 0 
Ll L2 Lr Q 

where Bi and Ci are irreducible, Bi are primitive and Ci are periodic. Define the 
corresponding sets of states as SBi' Se" Sq. Q might be reducible, but the groups 
of states in Sq leak into the B or C blocks, i.e., Sq represents the transient part of 
the state space. This decomposition is illustrated in Figure 1a. For homogeneous 
and non-homogeneous Markov models (with constant incidence matrix At = Ao), 
because P(qt E Sqlqt-l E Sq) < 1, liIl1t-l-oo P(qt E Sqlqo E Sq) = O. Furthermore, 
because the Bi are primitive, we can apply Theorem 1, and starting from a state 
in SB" all information about an initial state at to is gradually lost. 
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(b) 

Figure 1: (a): Transition graph corresponding to the canonical decomposition. 
(b): Periodic graph 91 becomes primitive (period 1) 92 when adding loop with 
states 4,5. 

A more difficult case is the one of (A(to ,t))jk with initial state j ESc, . Let d i be 
the period of the ith periodic block Cj. It can be shown r6] that taking d products 
of periodic matrices with the same incidence matrix and period d yields a block­
diagonal matrix whose d blocks are primitive. Thus C(to ,t) retains information 
about the initial block in which qt was. However, for every such block of size 
> 1, information will be gradually lost about the exact identity of the state within 
that block. This is best demonstrated through a simple example. Consider the 
incidence matrix represented by the graph 91 of Figure lb. It has period 3 and the 
only non-deterministic transition is from state 1, which can yield into either one of 
two loops. When many stochastic matrices with this graph are multiplied together, 
information about the loop in which the initial state was is gradually lost (i.e. if the 
initial state was 2 or 3, this information is gradually lost). What is retained is the 
phase information, i.e. in which block ({O}, {I}, or {2,3}) of a cyclic chain was the 
initial state. This suggests that it will be easy to learn about the type of outputs 
associated to each block of a cyclic chain, but it will be hard to learn anything 
else. Suppose now that the sequences to be modeled are slightly more complicated, 
requiring an extra loop of period 4 instead of 3, as in Figure lb. In that case A is 
primitive: all information about the initial state will be gradually lost. 

3.5 Learning Long-Term Dependencies: a Discrete Problem? 

We might wonder if, starting from a positive stochastic matrix, the learning algo­
rithm could learn the topology, i.e. replace some transition probabilities by zeroes. 
Let us consider the update rule for transition probabilities in the EM algorithm: 

A oL 
A ij 8A;j (2) 

ij ~ " oL . 
wj Aij oA.j 

Starting from Aij > 0 we could obtain a new Aij = 0 only if O~~j = 0, i.e. on a 
local maximum of the likelihood L. Thus the EM training algorithm will not exactly 
obtain zero probabilities. Transition probabilities might however approach O. 

It is also interesting to ask in which conditions we are guaranteed that there will not 
be any diffusion (of influence in the forward phase, and credit in the backward 
phase of training). It requires that some of the eigenvalues other than Al = 1 have 
a norm that is also 1. This can be achieved with periodic matrices C (of period 
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Figure 2: (a) Convergence of Dobrushin's coefficient (see Definition 3. (b) Evolution 
of products A(l,t) for fully connected graph. Matrix elements are visualized with 
gray levels. 

d), which have d eigenvalues that are the d roots of 1 on the complex unit circle. 
To avoid any loss of information also requires that Cd = I be the identity, since 
any diagonal block of Cd with size more than 1 will yield to a loss of information 
(because of diffusion in primitive matrices) . This can be generalized to reducible 
matrices whose canonical form is composed of periodic blocks Ci with ct = I. 
The condition we are describing actually corresponds to a matrix with only 1 's and 
O's_ If At is fixed, it would mean that the Markov chain is also homogeneous. It ap­
pears that many interesting computations can not be achieved with such constraints 
(i.e. only allowing one or more cycles of the same period and a purely deterministic 
and homogeneous Markov chain). Furthermore, if the parameters of the system 
are the transition probabilities themselves (as in ordinary HMMs), such solutions 
correspond to a subset of the corners of the 0-1 hypercube in parameter space. 
Away from those solutions, learning is mostly influenced by short term dependen­
cies, because of diffusion of credit. Furthermore, as seen in equation 2, algorithms 
like EM will tend to stay near a corner once it is approached. This suggests that 
discrete optimization algorithms, rather continuous local algorithms, may be more 
appropriate to explore the (legal) corners of this hypercube. 

4 Experiments 

4.1 Diffusion: Numerical Simulations 

Firstly, we wanted to measure how (and if) different kinds of products of stochastic 
matrices converged, for example to a matrix of equal rows. We ran 4 simulations, 
each with an 8 states non-homogeneous Markov chain but with different constraints 
on the transition graph: 1) 9 fully connected; 2) 9 is a left-to-right model (i.e. A is 
upper triangular); 3) 9 is left-to-right but only one-state skips are allowed (i.e. A 
is upper bidiagonal); 4) At are periodic with period 4. Results shown in Figure 2 
confirm the convergence towards zero of the ergodicity coefficient 1 , at a rate that 
depends on the graph topology. In Figure 2, we represent visually the convergence 
of fully connected matrices, in only 4 time steps, towards equal columns. 

lexcept for the experiments with periodic matrices, as expected 
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Figure 3: (a): Generating HMM. Numbers out of state circles denote output sym­
bols. (b): Percentage of convergence to a good solution (over 20 trials) for various 
series o( experiments as the span of dependencies is increased. 

4.2 Training Experiments 

To evaluate how diffusion impairs training, a set of controlled experiments were 
performed, in which the training sequences were generated by a simple homogeneous 
HMM with long-term dependencies, depicted in Figure 3a. Two branches generate 
similar sequences except for the first and last symbol. The extent of the long­
term context is controlled by the self transition probabilities of states 2 and 5, 
A = P(qt = 2lqt-l - 2) = P(qt = 5lqt-l = 5). Span or "half-life" is log(.5)/ log(A), 
i.e. Aspan = .5). Following [4], data was generated for various span of long-term 
dependencies (0.1 to 1000). 

For each series of experiments, varying the span, 20 different training trials were 
run per span value, with 100 training sequences2 . Training was stopped either 
after a maximum number of epochs (200), of after the likelihood did not improve 
significantly, i.e., (L(t) - L(t - l))/IL(t)1 < 10- 5 , where L(t) is the logarithm of the 
likelihood of the training set at epoch t. 

If the HMM is fully connected (except for the final absorbing state) and has just 
the right number of states, trials almost never converge to a good solution (1 in 
160 did). Increasing the number of states and randomly putting zeroes helps. The 
randomly connected HMMs had 3 times more states than the generating HMM 
and random connections were created with 20% probability. Figure 3b shows the 
average number of converged trials for these different types of HMM topology. A 
trial is considered successful when it yields a likelihood almost as good or better 
than the likelihood of the generating HMM on the same data. In all cases the 
number of successful trials rapidly drops to zero beyond some value of span. 

5 Conclusion and Future Work 

In previous work on recurrent networks we had found that propagating credit 
over the long term was incompatible with storing information for the long term. 
For Markovian models, we found that when the transition probabilities are close 
to 1 and 0, information can be stored for the long term AND credit can be prop-

2it appeared sufficient since the likelihood of the generating HMM did not improve 
much when trained on this data 
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agated over the long term. However, like for recurrent networks, this makes the 
problem of learning long-term dependencies look more like a discrete optimization 
problem. Thus it appears difficult for local learning algorithm such as EM to learn 
optimal transition probabilities near 1 or 0, i.e. to learn the topology, while taking 
into account long-term dependencies. The arguments presented are essentially an 
application of established mathematical results on Markov chains to the problem 
of learning long term dependencies in homogeneous and non-homogeneous HMMs. 
These arguments were also supported by experiments on artificial data, studying 
the phenomenon of diffusion of credit and the corresponding difficulty in training 
HMMs to learn long-term dependencies . 

IOHMMs [1] introduce a reparameterization of the problem: instead of directly 
learning the transition probabilities, we learn parameters of a function of an input 
sequence. Even with a fully connected topology, transition probabilities computed 
at each time step might be very close to ° and 1. Because of the non-stationarity, 
more interestin~ computations can emerge than the simple cycles studied above. 
For example in l3] we found IOHMMs effective in grammar inference tasks. In [1] 
comparative experiments were performed with a preliminary version of IOHMMs 
and other algorithms such as recurrent networks, on artificial data on which the 
span of long-term dependencies was controlled. IOHMMs were found much better 
than the other algorithms at learning these tasks. 

Based on the analysis presented here, we are also exploring another approach to 
learning long-term dependencies that consists in building a hierarchical represen­
tation of the state. This can be achieved by introducing several sub-state variables 
whose Cartesian product corresponds to the system state. Each of these sub-state 
variables can operate at a different time scale, thus allowing credit to propagate 
over long temporal spans for some of these variables . Another interesting issue to 
be investigated is whether techniques of symbolic prior knowledge injection (such 
as in (5]) can be exploited to choose good topologies. One advantage, compared to 
traditIOnal neural network approaches, is that the model has an underlying finite 
state structure and is thus well suited to inject discrete transition rules . 
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