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Abstract 

In this paper we consider speech coding as a problem of speech 
modelling. In particular, prediction of parameterised speech over 
short time segments is performed using the Hierarchical Mixture of 
Experts (HME) (Jordan & Jacobs 1994). The HME gives two ad­
vantages over traditional non-linear function approximators such 
as the Multi-Layer Percept ron (MLP); a statistical understand­
ing of the operation of the predictor and provision of information 
about the performance of the predictor in the form of likelihood 
information and local error bars. These two issues are examined 
on both toy and real world problems of regression and time series 
prediction. In the speech coding context, we extend the principle 
of combining local predictions via the HME to a Vector Quantiza­
tion scheme in which fixed local codebooks are combined on-line 
for each observation. 

1 INTRODUCTION 

We are concerned in this paper with the application of multiple models, specifi­
cally the Hierarchical Mixtures of Experts, to time series prediction, specifically the 
problem of predicting acoustic vectors for use in speech coding. There have been 
a number of applications of multiple models in time series prediction. A classic 
example is the Threshold Autoregressive model (TAR) which was used by Tong & 
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Lim (1980) to predict sunspot activity. More recently, Lewis, Kay and Stevens 
(in Weigend & Gershenfeld (1994)) describe the use of Multivariate and Regres­
sion Splines (MARS) to the prediction of future values of currency exchange rates. 
Finally, in speech prediction, Cuperman & Gersho (1985) describe the Switched 
Inter-frame Vector Prediction (SIVP) method which switches between separate lin­
ear predictors trained on different statistical classes of speech. The form of time 
series prediction we shall consider in this paper is the single step prediction fI(t) of a 
future quantity y(t) , by considering the previous c: samples. This may be viewed as 
a regression problem over input-output pairs {x t), y(t)}~ where x(t) is the lag vec­
tor (y(t-I), y(t-2), ... , y(t-p». We may perform this regression using standard linear 
models such as the Auto-Regressive (AR) model or via nonlinear models such as 
connectionist feed-forward or recurrent networks. The HME overcomes a number of 
problems associated with traditional connectionist models via its architecture and 
statistical framework. Recently, Jordan & Jacobs (1994) and Waterhouse & Robin­
son (1994) have shown that via the EM algorithm and a 2nd order optimization 
scheme known as Iteratively Reweighted Least Squares (IRLS), the HME is faster 
than standard Multilayer Perceptrons (MLP) by at least an order of magnitude on 
regression and classification tasks respectively. Jordan & Jacobs also describe var­
ious methods to visualise the learnt structure of the HME via 'deviance trees' and 
histograms of posterior probabilities. In this paper we provide further examples 
of the structural relationship of the trained HME and the input-output space in 
the form of expert activation plots. In addition we describe how the HME can be 
extended to give local error bars or measures of confidence in regression and time 
series prediction problems. Finally, we describe the extension of the HME to acous­
tic vector prediction, and a VQ coding scheme which utilises likelihood information 
from the HME. 

2 HIERARCHICAL MIXTURES OF EXPERTS 

The HME architecture (Figure 1) is based on the principle of 'divide and conquer' 
in which a large, hard to solve problem is broken up into many, smaller, easier 
to solve problems. It consists of a series of 'expert networks' which are trained 
on different parts of the input space. The outputs of the experts are combined 
by a 'gating network' which is trained to stochastically select the expert which is 
performing best at solving a particular part of the problem. The operation of the 
HME is as follows: the gating networks receive the input vectors x(t) and produce 
as outputs probabilities P(mi/.x(t), 7'/j) for each local branch mj of assigning the current 
input to the different branches, where T/j are the gating network parameters. The 
expert networks sit at the leaves of the tree and each output a vector flJt) given 
input vector x(t) and parameters Bj . These outputs are combined in a weighted sum 
by P(mjlX<t), T/j) to give the overall output vector for this region. This procedure 
continues recursively upwards to the root node. In time series prediction, each 
expert j is a linear single layer network with the form: 

flY) = B; x (t) 

where B; is matrix and x(t) is the lag vector discussed earlier, which is identical in 
form to an AR model. 
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Figure 1: The Hierarchical Mixture of Experts. 

2.1 Error bars via HME 

Since each expert is an AR model, it follows that the output of each expert y(t) is 
the expected value of the observations y(t) at each time t. The conditional likelihood 
of yet) given the input and expert mj is 

P(y(t) I x (t), mj, Bj) = 12:C
j 
I exp ( - ~ (y - yy»)T Cj(y - yjt))) 

where Cj is the covariance matrix for expert mj which is updated during training as: 

C = _1_ "'" h(t)(y(r) _ y(t)l (y(t) _ y~t)) 
J '" h~t) L..J J ] ] 

L.Jt J t 

where hy) are the posterior probabilities I of each expert mj' Taking the moments of 
the overall likelihood of the HME gives the output of the HME as the conditional 
expected value of the target output yct), 

yet) = E(yct)lxct) , 0, M) 

= 2: P(mjlxct), l1j)E(y(t)lxct), ej,mj) = 2: gY)iJ/t), 
j j 

Where M represents the overall HME model and e the overall set of parameters. 
Taking the second central moment of yct) gives, 

C = E«y(t) - yy»)2 I xct), 0, M) 

= 2: P(mJlx(t), l1j)E«y(t) - yjt))2I x (t), ej, mj) 

j 

= 2: gjt)(Cj + yjt). iJj(t)T), 

j 

lSee (Jordan & Jacobs 1994) for a fuller discussion of posterior probabilities and like­
lihoods in the context of the HME. 
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which gives, in a direct fashion, the covariance of the output given the input and the 
model. If we assume that the observations are generated by an underlying model, 
which generates according to some function f(x(t)) and corrupted by zero mean 
normally distributed noise n(x) with constant covariance 1:, then the covariance of 
y(t) is given by, 

V(y(t)) = V(to) + 1:, 
so that the covariance computed by the method above, V(y(t)) , takes into account 
the modelling error as well as the uncertainty due to the noise. Weigend & Nix 
(1994) also calculate error bars using an MLP consisting of a set of tanh hidden 
units to estimate the conditional mean and an auxiliary set of tanh hidden units 
to estimate the variance, assuming normally distributed errors. Our work differs 
in that there is no assumption of normality in the error distribution, rather that 
the errors of the terminal experts are distributed normally, with the total error 
distribution being a mixture of normal distributions. 

3 SIMULATIONS 

In order to demonstrate the utility of our approach to variance estimation we con­
sider one toy regression problem and one time series prediction problem. 

3.1 Toy Problem: Computer generated data 

2,------..--...., 

1.5 

~-0.5 

-1 -0.2 

-1.5 -0.4 

-2 -O.S 

-2.5 -0.8 

-3 '------'------' 
o 2 

-1 '------'-----" 
o 2 

0.08,------~-..., 

N O.OS 

~ 
fO.04 

~ 
-0.02 

0.8 
Q) 

go.S 
.~ 
~0.4 

2 
x 

2 
x x x 

Figure 2: Performance on the toy data set of a 5 level binary HME. (a) training set 
(dots) and underlying function f(x) (solid), (b) underlying function (solid) and prediction 
y(x) (dashed), (c) squared deviation of prediction from underlying function, (d) true noise 
variance (solid) and variance of prediction (dashed). 

By way of comparison, we used the same toy problem as Weigend & Nix (1994) 
which consists of 1000 training points and 10000 separate evaluation points from 
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the function g(x) where g(x) consists of a known underlying function f(x) corrupted 
by normally distributed noise N(O, (J2(X)) , 

f(x) = sin(2.5x) x sin(l. 5x), (J2(x) = 0.01 + O. 25 x [1 - sin(2. 5x)f. 

As can be seen by Figure 2, the HME has learnt to approximate both the underlying 
function and the additive noise variance. The deviation of the estimated variance 
from the "true" noise variance may be due to the actual noise variance being lower 
than the maximum denoted by the solid line at various points. 

3.2 Sunspots 
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Figure 3: Performance on the Sunspots data set. (a) Actual Values (x) and predicted 
values (0) with error bars. (b) Activation of the expert networks; bars wide in the vertical 
axis indicate strong activation. Notice how expert 7 concentrates on the lulls in the series 
while expert 2 deals with the peaks. 

I METHOD I NMSE' 

Train Test 
1700-1920 1921-1955 1956-1979 

MLP 0.082 0.086 0.35 
TAR 0.097 0.097 0.28 
HME 0.061 0.089 0.27 

Table 1: Results of single step prediction on the Sunspots data set using a mixture of 7 
experts (104 parameters) and a lag vector of 12 years. NMSE' is the NMSE normalised 
by the variance of the entire record 1700 to 1979. 
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The Sunspots2 time series consists of yearly sunspot activity from 1700 to 1979 and 
was first tackled using connectionist models by Weigend, Huberman & Rumelhart 
(1990) who used a 12-8-1 MLP (113 parameters) . Prior to this work, the TAR was 
used by Tong (1990). Our results, which were obtained using a random leave 10% 
out cross validation method, are shown in Table 1. We are considering only single 
step prediction on this problem, which involves prediction of the next value based 
on a set of previous values of the time series. Our results are evaluated in terms of 
Normalised Mean Squared Error (NMSE) (Weigend et al. 1990), which is defined 
as the ratio of the variance of the prediction on the test set to the variance of the 
test set itself. 

The HME outperforms both the TAR and the MLP on this problem, and addition­
ally provides both information about the structure of the network after training via 
the expert activation plot and error bars of the predictions, as shown in Figure 3. 
Further improvements may be possible by using likelihood information during cross 
validation so that a joint optimisation of overall error and variance is achieved. 

4 SPEECH CODING USING HME 

In the standard method of Linear Predictive Coding (LPC) (Makhoul 1975), speech 
is parametrised into a set of vectors of duration one frame (around 10 ms). Whilst 
simple scalar quantization of the LPC vectors can achieve bit rates of around 2400 
bits per second (bps), Yong, Davidson & Gersho (1988) have shown that simple 
linear prediction of Line Spectral Pairs (LSP) (Soong & Juang 1984) vectors followed 
by Vector Quantization (VQ) (Abut , Gray & Rebolledo 1984) of the error vectors 
can yield bit rates of around 800 bps. In this paper we describe a speech coding 
framework which uses the HME in two stages. Firstly, the HME is used to perform 
prediction of the acoustic vectors. The error vectors are then quantized efficiently 
by using a VQ scheme which utilises the likelihood information derived from the 
HME. 

4.1 Mixing VQ codebooks ia Gating networks 

In a VQ scheme using a Euclidean distance measure , there is an implicit assumption 
that the inputs follow a Gaussian probability density function (pdf). This is satisfied 
if we quantize the residuals from a linear predictor , but not the residuals from an 
HME which follow a mixture of Gaussians pdf. A more efficient method is therefore 
to generate separate VQ code books for each expert in the HME and combine them 
via the priors on each expert from the gating networks. The code book for the 
overall residual vectors on the test set is then generated at each time dynamically 
by choosing the first D x gjt) codes, where D is the size of the expert codebooks and 

gY) is the prior on each expert. 

2 Available via anonymous ftp at fip.cs.colorado.edu III jpub jTime-Series as 
DataSunspots.Yearly 
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4.2 Results of Speech Coding Evaluations 

Initial experiments were performed using 23 Mel scale log energy frequency bins as 
acoustic vectors and using single variances Cj = (J;I as expert network covariance 
matrices. The results of training over 100 ,000 frames and evaluation over a further 
100,000 frames on the Resource Management (RM) corpus are shown in Table 2 
and Figure 4 which shows the good specialisation of the HME in this problem. 

METHOD Prediction Gain (dB) 
Train Test 

Linear 12.07 10.95 
1 level HME 18.1 15.55 
2 level HME 20.20 16.39 

Table 2: Prediction of Acoustic Vectors using linear prediction and binary branching 
HMEs with 1 and 2 levels. Prediction gain (Cuperman & Gersho 1985) is the ratio of the 
signal variance to prediction error variance. 
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Figure 4: The behaviour of a mixture of 7 experts at predicting Mel-scale log energy 
frequency bins over 100 16ms fram es. The top figure is a spectrogram of the speech and 
the lower figure is an expert activation plot, showmg the gating network decisions. 

We have conducted further experiments using LSPs and cepstrals as acoustic vec­
tors , and using diagonal expert network covariance matrices, on a very large speech 
corpus. However, initial experiments show only a small improvement in gain over 
a single linear predictor and further investigation is underway. We have also coded 
acoustic vectors using 8 bits per frame with frame lengths of 12.5 ms, passing power, 
pitch and degree of voicing as side band information , without appreciable distor­
tion over simple LPC coding. A full system will include prediction of all acoustic 
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parameters and we anticipate further reductions on this initial figure with future 
developments. 

5 CONCLUSION 

The aim of speech coding is the efficient coding of the speech signal with little 
perceptual loss. This paper has described the use of the HME for acoustic vector 
prediction. We have shown that the HME can provide improved performance over a 
linear predictor and in addition it provides a time varying variance for the prediction 
error. The decomposition of the linear prediction problem into a solution via a 
mixture of experts also allows us to construct a VQ codebook on the fly by mixing 
the codebooks of the various experts. 

We expect that the direct computation of the time varying nature of the prediction 
accuracy will find many applications. Within the acoustic vector prediction problem 
we would like to exploit this information by exploring the continuum between the 
fixed bit rate coder described here and a variable bit rate coder that produces 
constant spectral distortion. 
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