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Abstract 

We propose a statistical mechanical framework for the modeling 
of discrete time series. Maximum likelihood estimation is done via 
Boltzmann learning in one-dimensional networks with tied weights. 
We call these networks Boltzmann chains and show that they 
contain hidden Markov models (HMMs) as a special case. Our 
framework also motivates new architectures that address partic­
ular shortcomings of HMMs. We look at two such architectures: 
parallel chains that model feature sets with disparate time scales, 
and looped networks that model long-term dependencies between 
hidden states. For these networks, we show how to implement 
the Boltzmann learning rule exactly, in polynomial time, without 
resort to simulated or mean-field annealing. The necessary com­
putations are done by exact decimation procedures from statistical 
mechanics. 

1 INTRODUCTION AND SUMMARY 

Statistical models of discrete time series have a wide range of applications, most 
notably to problems in speech recognition (Juang & Rabiner, 1991) and molecular 
biology (Baldi, Chauvin, Hunkapiller, & McClure, 1992). A common problem in 
these fields is to find a probabilistic model, and a set of model parameters, that 
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account for sequences of observed data. Hidden Markov models (HMMs) have been 
particularly successful at modeling discrete time series. One reason for this is the 
powerful learning rule (Baum) 1972») a special case of the Expectation-Maximization 
(EM) procedure for maximum likelihood estimation (Dempster) Laird) & Rubin) 
1977). 

In this work) we develop a statistical mechanical framework for the modeling of 
discrete time series. The framework enables us to relate HMMs to a large family 
of exactly solvable models in statistical mechanics. The connection to statistical 
mechanics was first noticed by Sourlas (1989») who studied spin glass models of 
error-correcting codes. We view the estimation procedure for HMMs as a special 
(and particularly tractable) case of the Boltzmann learning rule (Ackley) Hinton) & 
Sejnowski) 1985; Byrne) 1992). 

The rest of this paper is organized as follows . In Section 2) we review the modeling 
problem for discrete time series and establish the connection between HMMs and 
Boltzmann machines. In Section 3) we show how to quickly determine whether 
or not a particular Boltzmann machine is tractable) and if so) how to efficiently 
compute the correlations in the Boltzmann learning rule. Finally) in Section 4) 
we look at two architectures that address particular weaknesses of HMMs: the 
modelling of disparate time scales and long-term dependencies. 

2 MODELING DISCRETE TIME SERIES 

A discrete time series is a sequence of symbols {jdr=l in which each symbol belongs 
to a finite countable set) i.e. jl E {1) 2) .. . ) m}. Given one long sequence) or perhaps 
many shorter ones) the modeling task is to characterize the probability distribution 
from which the time series are generated. 

2.1 HIDDEN MARKOV MODELS 

A first-order Hidden Markov Model (HMM) is characterized by a set of n hidden 
states) an alphabet of m symbols) a transmission matrix ajj') an emission matrix 
bjj ) and a prior distribution 7I'j over the initial hidden state. The sequence of states 
{idr=l and symbols {jdr=l is modeled to occur with probability 

(1) 

The modeling problem is to find the parameter values (ajj' , bij ) 7I'j) that maximize 
the likelihood of observed sequences of training data. We will elaborate on the 
learning rule in section 2.3) but first let us make the connection to a well-known 
family of stochastic neural networks , namely Boltzmann machines. 

2.2 BOLTZMANN MACHINES 

Consider a Boltzmann machine with m-state visible units) n-state hidden units) tied 
weights) and the linear architecture shown in Figure 1. This example represents the 
simplest possible Boltzmann "chain))) one that is essentially equivalent to a first­
order HMM unfolded in time (MacKay) 1994). The transition weights Aii' connect 
adjacent hidden units) while the emission weights Bjj connect each hidden unit to 
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Figure 1: Boltzmann chain with n-state hidden units, m-state visible units, transi­
tion weights Aiil, emission weights Bij, and boundary weights IIi. 

its visible counterpart. In addition, boundary weights IIi model an extra bias on 
the first hidden unit. Each configuration of units represents a state of energy 

L-1 L 

1t[{il' jd] = -Ilil - L Ailil+t - 2: Bitio (2) 
l=l l=l 

where {idf=l ({jl }f=l) is the sequence of states over the hidden (visible) units. The 
probability to find the network in a particular configuration is given by 

P({ ' '}) 1 -{31-l 
Zl,)l = Ze , (3) 

where f3 = I/T is the inverse temperature, and the partition function 

Z = L e-fJ'H. (4) 
{idd 

is the sum over states that normalizes the Boltzmann distribution, eq. (3). 

Comparing this to the HMM distribution, eq. (1), it is clear that any first-order 
HMM can be represented by the Boltzmann chain of figure 1, provided we take1 

Aii' = TIn aij/, Bij = TIn bij , IIi = TIn 7ri· (5) 
Later, in Section 4, we will consider more complicated chains whose architectures 
address particular shortcomings of HMMs. For now, however, let us continue to 
develop the example of figure 1, making explicit the connection to HMMs. 

2.3 LEARNING RULES 

In the framework of Boltzmann learning (Williams & Hinton, 1990), the data for 
our problem consist of sequences of states over the visible units; the goal is to find 
the weights (Ail, Bij , IIi) that maximize the likelihood of the observed data. The 
likelihood of a sequence {jd is given by the ratio 

. P({il,jd) e-{3'H./Z Zc 
P({Jd) = P({idl{jl}) = e-{3'H./Zc = Z' (6) 

1 Note, however, that the reverse statement-that for any set of parameters, this Boltz­
mann chain can be represented as an HMM-is not true. The weights in the Boltzmann 
chain represent arbitrary energies between ±oo, whereas the HMM parameters represent 
probabilities that are constrained to obey sum rules, such as Lil aiil = 1. The Boltzmann 
chain of figure 1 therefore has slightly more degrees of freedom than a first-order HMM. 
An interpretation of these extra degrees of freedom is given by MacKay (1994). 
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where Zc is the clamped partition function 

Zc = L e-/31i . 

{it} 

(7) 

Note that the sum in Zc is only over the hidden states in the network, while the 
visible states are clamped to the observed values bt}. 
The Boltzmann learning rule adjusts the weights of the network by gradient-ascent 
on the log-likelihood. For the example of figure 1, this leads to weight updates 

L-l 

~Aii' = 7J/3 L [(6iil6ilil+Jc - (6iil6ilil+l)] ; (8) 
l=1 

L 

~Bij 7J/3 L [(6iil6jjl)C - (6i il 6jjl)] , (9) 
l=1 

~ni 7J/3 [(6ii1 )c - (6ii1 )] , (10) 
where 6ij stands for the Kronecker delta function, 7J is a learning rate, and (-) and 
(-) c denote expectations over the free and clamped Boltzmann distributions. 

The Boltzmann learning rule may also be derived as an Expectation-Maximization 
(EM) algorithm. The EM procedure is an alternating two-step method for max­
imum likelihood estimation in probability models with hidden and observed vari­
ables. For Boltzmann machines in general, neither the E-step nor the M-step can 
be done exactly; one must estimate the necessary statistics by Monte Carlo sim­
ulation (Ackley et al., 1985) or mean-field theory (Peterson & Anderson, 1987). 
In certain special cases (e.g. trees and chains) , however, the necessary statistics 
can be computed to perform an exact E-step (as shown below). While the M­
step in these Boltzmann machines cannot be done exactly, the weight updates can 
be approximated by gradient descent. This leads to learning rules in the form of 
eqs. (8-10). 

HMMs may be viewed as a special case of Boltzmann chains for which both the 
E-step and the M-step are analytically tractable. In this case, the maximization in 
the M-step is performed subject to the constraints 2:i e/3Il • = 1, 2:il e/3A ;;1 = 1, and 
2:j e/3B ;i = 1. These constraints imply Z = 1 and lead to closed-form equations 
for the weight updates in HMMs. 

3 EXACT METHODS FOR BOLTZMANN LEARNING 

The key technique to compute partition functions and correlations in Boltzmann 
chains is known as decimation. The idea behind decimation2 is the following. Con­
sider three units connected in series, as shown in Figure 2a. Though not directly 
connected, the end units have an effective interaction that is mediated by the middle 
one. In fact, the two weights in series exert the same influence as a single effective 
weight, given by 

(11) 
jl 

2 A related method, the transfer matrix, is described by Stolarz (1994). 
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Figure 2: Decimation, pruning, and joining in Boltzmann machines. 

Replacing the weights in this way amounts to integrating out, or decimating, the 
degree offreedom represented by the middle unit. An analogous rule may be derived 
for the situation shown in Figure 2b. Summing over the degrees of freedom of the 
dangling unit generates an effective bias on its parent, given by 

ef3B• = L:: ef3B•j • 

j 

(12) 

We call this the pruning rule. Another type of equivalence is shown in Figure 2c. 
The two weights in parallel have the same effect as the sum total weight 

Ajjl = A~P + A~i) . (13) 

We call this the joining rule. It holds trivially for biases as well as weights. 

The rules for decimating, pruning, and joining have simple analogs in other types 
of networks (e.g. the law for combining resistors in electric circuits), and the strat­
egy for exploiting them is a familiar one. Starting with a complicated network, 
we iterate the rules until we have a simple network whose properties are easily 
computed. A network is tractable for Boltzmann learning if it can be reduced to 
any pair of connected units. In this case, we may use the rules to compute all the 
correlations required for Boltzmann learning. Clearly, the rules do not make all net­
works tractable; certain networks (e.g. trees and chains), however, lend themselves 
naturally to these types of operations. 

4 DESIGNER NETS 

The rules in section 3 can be used to quickly assess whether or not a network is 
tractable for Boltzmann learning. Conversely, they can be used to design networks 
that are computationally tractable. This section looks at two networks designed to 
address particular shortcomings of HMMs. 

4.1 PARALLEL CHAINS AND DISPARATE TIME SCALES 

An important problem in speech recognition (Juang et al., 1991) is how to "combine 
feature sets with fundamentally different time scales." Spectral parameters, such 
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Figure 3: Coupled parallel chains for features with different time scales. 

as the cepstrum and delta-cepstrum, vary on a time scale of 10 msec; on the other 
hand, prosodic parameters, such as the signal energy and pitch, vary on a time scale 
of 100 msec. A model that takes into account this disparity should avoid two things. 
The first is redundancy-in particular, the rather lame solution of oversampling the 
nonspectral features. The second is overfitting. How might this arise? Suppose we 
have trained two separate HMMs on sequences of spectral and prosodic features, 
knowing that the different features "may not warrant a single, unified Markov chain" 
(Juang et al., 1991). To exploit the correlation between feature sets, we must now 
couple the two HMMs. A naive solution is to form the Cartesian product of their 
hidden state spaces and resume training. Unfortunately, this results in an explosion 
in the number of parameters that must be fit from the training data. The likely 
consequences are overfitting and poor generalization. 

Figure 3 shows a network for modeling feature sets with disparate time scales-in 
this case, a 2: 1 disparity. Two parallel Boltzmann chains are coupled by weights 
that connect their hidden units. Like the transition and emission weights within 
each chain, the coupling weights are tied across the length of the network. Note 
that coupling the time scales in this way introduces far fewer parameters than 
forming the Cartesian product of the hidden state spaces. Moreover, the network is 
tractable by the rules of section 3. Suppose, for example, that we wish to compute 
the correlation between two neighboring hidden units in the middle of the network. 
This is done by first pruning all the visible units, then repeatedly decimating hidden 
units from both ends of the network. 

Figure 4 shows typical results on a simple benchmark problem, with data generated 
by an artificially constructed HMM. We tested the parallel chains model on 10 
training sets, with varying levels of built-in correlation between features. A two­
step method was used to train the parallel chains. First, we set the coupling weights 
to zero and trained each chain by a separate Baum-Welch procedure. Then, after 
learning in this phase was complete, we lifted the zero constraints and resumed 
training with the full Boltzmann learning rule. The percent gain in this second 
phase was directly related to the degree of correlation built into the training data, 
suggesting that the coupling weights were indeed capturing the correlation between 
feature sets. We also compared the performance of this Boltzmann machine versus 
that of a simple Cartesian-product HMM trained by an additional Baum-Welch 
procedure. While in both cases the second phase of learning led to reduced training 
error, the Cartesian product HMMs were decidedly more prone to overfitting. 
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Figure 4: (a) Log-likelihood versus epoch for parallel chains with 4-state hidden 
units, 6-state visible units, and 100 hidden-visible unit pairs (per chain) . The 
second jump in log-likelihood occurred at the onset of Boltzmann learning (see 
text). (b) Percent gain in log-likelihood versus built-in correlation between feature 
sets . 

4.2 LOOPS AND LONG-TERM DEPENDENCIES 

Another shortcoming of first-order HMMs is that they cannot exhibit long-term 
dependencies between the hidden states (Juang et aL , 1991). Higher-order and 
duration-based HMMs have been used in this regard with varying degrees of suc­
cess. The rules of section 3 suggest another approach-namely, designing tractable 
networks with limited long-range connectivity. As an example, Figure 5a shows a 
Boltzmann chain with an internal loop and a long-range connection between the 
first and last hidden units. These extra features could be used to enforce known 
periodicities in the time series. Though tractable for Boltzmann learning, the loops 
in this network do not fit naturally into the framework of HMMs. Figure 5b shows 
learning curves for a toy problem, with data generated by another looped network. 

Carefully chosen loops and long-range connections provide additional flexibility in 
the design of probabilistic models for time series. Can networks with these extra 
features capture the long-term dependencies exhibited by real data? This remains 
an important issue for future research . 
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