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We present efficient algorithms for dealing with the problem of mis­
sing inputs (incomplete feature vectors) during training and recall. 
Our approach is based on the approximation of the input data dis­
tribution using Parzen windows. For recall, we obtain closed form 
solutions for arbitrary feedforward networks. For training, we show 
how the backpropagation step for an incomplete pattern can be 
approximated by a weighted averaged backpropagation step. The 
complexity of the solutions for training and recall is independent 
of the number of missing features. We verify our theoretical results 
using one classification and one regression problem. 

1 Introduction 

The problem of missing data (incomplete feature vectors) is of great practical and 
theoretical interest. In many applications it is important to know how to react if the 
available information is incomplete, if sensors fail or if sources of information become 
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unavailable. As an example, when a sensor fails in a production process, it might 
not be necessary to stop everything if sufficient information is implicitly contained 
in the remaining sensor data. Furthermore, in economic forecasting, one might want 
to continue to use a predictor even when an input variable becomes meaningless (for 
example, due to political changes in a country). As we have elaborated in earlier 
papers, heuristics such as the substitution of the mean for an unknown feature can 
lead to solutions that are far from optimal (Ahmad and Tresp, 1993, Tresp, Ahmad, 
and Neuneier, 1994). Biological systems must deal continuously with the problem 
of unknown uncertain features and they are certainly extremely good at it. From 
a biological point of view it is therefore interesting which solutions to this problem 
can be derived from theory and if these solutions are in any way related to the way 
that biology deals with this problem (compare Brunelli and Poggio, 1991). Finally, 
having efficient methods for dealing with missing features allows a novel pruning 
strategy: if the quality of the prediction is not affected if an input is pruned, we 
can remove it and use our solutions for prediction with missing inputs or retrain 
the model without that input (Tresp, Hollatz and Ahmad, 1995). 

In Ahmad and Tresp (1993) and in Tresp, Ahmad and Neuneier (1994) equations for 
training and recall were derived using a probabilistic setting (compare also Buntine 
and Weigend, 1991, Ghahramani and Jordan, 1994). For general feedforward neural 
networks the solution was in the form of an integral which has to be approxima­
ted using numerical integration techniques. The computational complexity of these 
solutions grows exponentially with the number of missing features. In these two 
publications, we could only obtain efficient algorithms for networks of normalized 
Gaussian basis functions. It is of great practical interest to find efficient ways of 
dealing with missing inputs for general feedforward neural networks which are more 
commonly used in applications. In this paper we describe an efficient approximation 
for the problem of missing information that is applicable to a large class of learning 
algorithms, including feedforward networks. The main results are Equation 2 (re­
call) and Equation 3 (training). One major advantage of the proposed solution is 
that the complexity does not increase with an increasing number of missing inputs. 
The solutions can easily be generalized to the problem of uncertain (noisy) inputs. 

2 Missing Information During Recall 

2.1 Theory 

We assume that a neural network N N(x) has been trained to predict E(ylx), the 
expectation of y E !R given x E ~. During recall we would like to know the 
network's prediction based on an incomplete input vector x = (XC, XU) where XC 

denotes the known inputs and XU the unknown inputs. The optimal prediction 
given the known features can be written as (Ahmad and Tresp, 1993) 
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Figure 1: The circles indicate 10 Gaussians approximating the input density distri­
bution. XC = Xl indicates the known input, X2 = XU is unknown. 

Similarly, for a network trained to estimate class probabilities, N Ni(X) ~ 
P(classilx), simply substitute P(classdxC) for E(ylx C ) and N Ni(X C , XU) for 
N N (XC, XU) in the last equation. 

The integrals in the last equations Can be problematic. In the worst case they have 
to be approximated numerically (Tresp, Ahmad and Neuneier, 1994) which is costly, 
since the computation is exponential in the number of missing inputs. For networks 
of normalized Gaussians, there exist closed form solutions to the integrals (Ahmad 
and Tresp, 1993). The following section shows how to efficiently approximate the 
integral for a large class of algorithms. 

2.2 An Efficient Approximation 

Parzen windows are commonly used to approximate densities. Given N training 
data {(xk, yk)lk = 1, ... , N}, we can approximate 

1 N 
P(x) ~ N L:G(x;xk,O') 

k=l 

(1) 

where 

k 11k 2 
G( X; X ,0') = (211'0'2)D /2 exp( - 20'211x - X II ) 

is a multidimensional properly normalized Gaussian centered at data xk with va­
riance 0'2. It has been shown (Duda and Hart (1973)) that Parzen windows appro­
ximate densities for N - 00 arbitrarily well, if 0' is appropriately scaled. 
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Using Parzen windows we may write 

where we have used the fact that 

and where G( xc; xc,le, u) is a Gaussian projected onto the known input dimensions 
(by simply leaving out the unknown dimensions in the exponent and in the norma­
lization, see Ahmad and Tresp, 1993). xc,le are the components of the training data 
corresponding to the known input (compare Figure 1). 

Now, if we assume that the network prediction is approximately constant over the 
"width" of the Gaussians, u, we can approximate 

J NN(xC, x") G(XC,x";xle,u) dx" ~ NN(xC,x",Ie) G(XC;xc,le,u) 

where N N(xC, x",Ie) is the network prediction which we obtain if we substituted the 
corresponding components of the training data for the unknown inputs. 

With this approximation, 

(2) 

Interestingly, we have obtained a network of normalized Gaussians which are 
centered at the known components of the data points. The" output weights" 
N N(xC, x",Ie) consist of the neural network predictions where for the unknown input 
the corresponding components of the training data points have been substituted. 
Note, that we have obtained an approximation which has the same structure as the 
solution for normalized Gaussian basis functions (Ahmad and Tresp, 1994). 

In many applications it might be easy to select a reasonable value for u using prior 
knowledge but there are also two simple ways to obtain a good estimate for u using 
leave-one-out methods. The first method consists of removing the k - th pattern 
from the training data and calculating P(xle ) ~ N:l L:f:l,l# G(xle ; xl, u). Then 

select the u for which the log likelihood L:1e log P(xle ) is maximum. The second 
method consists of treating an input of the k - th training pattern as missing and 
then testing how well our algorithm (Equation 2) can predict the target. Select the 
u which gives the best performance. In this way it would even be possible to select 
input-dimension-specific widths Ui leading to "elliptical", axis-parallel Gaussians 
(Ahmad and Tresp, 1993). 
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Note that the complexity of the solution is independent of the number of missing 
inputs! In contrast, the complexity of the solution for feedforward networks sugge­
sted in Tresp, Ahmad and Neuneier (1994) grows exponentially with the number of 
missing inputs. Although similar in character to the solution for normalized RBFs, 
here we have no restrictions on the network architecture which allows us to choose 
the network most appropriate for the application. 

If the amount of training data is large, one can use the following approximations: 

• Select only the K nearest data points. The distance is determined based 
on the known inputs. K can probably be reasonably small « 10). In the 
extreme case, K = 1 and we obtain a nearest-neighbor solution. Efficient 
tree-based algorithms exist for computing the K-nearest neighbors. 

• Use Gaussian mixtures instead of Parzen windows to estimate the input 
data distribution . Use the centers and variances of the components in 
Equation 2. 

• Use a clustering algorithm and use the cluster centers instead of the data 
points in Equation 2. 

Note that the solution which substitutes the components of the training data closest 
to the input seems biologically plausible. 

2.3 Experimental Results 

We tested our algorithm using the same data as in Ahmad and Tresp, 1993. The 
task was to recognize a hand gesture based on its 2D projection. As input, the 
classifier is given the 2D polar coordinates of the five finger tip positions relative to 
the 2D center of mass of the hand (the input space is therefore 10-D). A multi-layer 
perceptron was trained on 4368 examples (624 poses for each gesture) and tested on 
a similar independent test set. The inputs were normalized to a variance of one and 
u was set to 0.1. (For a complete description of the task see (Ahmad and Tresp, 
1993).) As in (Ahmad & Tresp, 1993) we defined a correct classification as one 
in which the correct class was either classified as the most probable or the second 
most probable. Figure 2 shows experimental results. On the horizontal axis, the 
number of randomly chosen missing inputs is shown. The continuous line shows 
the performance using Equation 2 where we used only the 10 nearest neighbors in 
the approximation. Even with 5 missing inputs we obtain a score of over 90 % 
which is slightly better than the solution we obtained in Ahmad and Tresp (1993) 
for normalized RBFs. We expect our new solution to perform very well in general 
since we can always choose the best network for prediction and are not restricted 
in the architecture. As a benchmark we also included the case where the mean of 
the missing input was substituted. With 5 missing inputs, the performance is less 
than 60 %. 
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Figure 2: Experimental results using a generalization data set. The continuous line 
indicates the performance using our proposed method. The dotted lines indicate 
the performance if the mean of the missing input variable is substituted. As a 
comparison, we included the results obtained in Ahmad and Tresp (1993) using the 
closed-form solution for RBF -networks (dashed). 

3 Training (Backpropagation) 

For a complete pattern (x.l:, yk), the weight update of a backpropagation step for 
weight Wj is 

A • (k _ NN. ( k))8NNw (xk) U.wJ (X Y w x 8 . 
Wj 

Using the approximation of Equation 1, we obtain for an incomplete data point 
(compare Tresp, Ahmad and Neuneier, 1994) 

(3) 

Here, IE compl indicates the sum over complete patterns in the training set, and (111 

is the standard deviation of the output noise. Note that the gradient is a network 
of normalized Gaussian basis functions where the "output-weight" is now 



Efficient Methods for Dealing with Missing Data in Supervised Learning 695 

The derivation of the last equation can be found in the Appendix. Figure 3 shows 
experimental results. 
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Figure 3: In the experiment, we used the Boston housing data set, which consists of 
506 samples. The task is to predict the housing price from 13 variables which were 
thought to influence the housing price in a neighborhood. The network (multi­
layer perceptron) was trained with 28 complete patterns plus an additional 225 
incomplete samples. The horizontal axis indicates how many inputs were missing 
in these 225 samples. The vertical axis shows the generalization performance. The 
continuous line indicates the performance of our approach and the dash-dotted line 
indicates the performance, if the mean is substituted for a missing variable. The 
dashed line indicates the performance of a network only trained with the 28 complete 
patterns. 

4 Conclusions 

We have obtained efficient and robust solutions for the problem of recall and training 
with missing data. Experimental results verified our method. All of our results can 
easily be generalized to the case of noisy inputs. 
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5 Appendix 

Assuming the standard signal-plus-Gaussian-noise model we obtain for a complete 
sample 

P(xk,ykl{wi}) = G(yk;NNw(xk),(1y) P(xk) 

where {Wi} is the set of weights in the network. For an incomplete sample 

Using the same approximation as in Section 2.2, 

p(xc,k, ykl{ W;}) ~ L G(yk; N Nw(xc,k, xu,I), (1y) G(xc,k; xc, I, (1) 
l€compl 

where I sums over all complete samples. As before, we substitute for the mis­
sing components the ones from the complete training data. The log-likelihood C 
(a function of the network weights {Wi}) can be calculated as (xk can be either 
complete or incomplete) C = Lf=llog p(xk, yk I{ Wi}). The maximum likelihood 
solution consists of finding weights {Wi} which maximize the log-likelihood. Using 
the approximation of Equation 1, we obtain for an incomplete sample as gradient 
Equation 3 (compare Tresp, Ahmad and Neuneier, 1994). 
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