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Abstract 

We describe single-transistor silicon synapses that compute, learn, 
and provide non-volatile memory retention. The single transistor 
synapses simultaneously perform long term weight storage, com­
pute the product of the input and the weight value, and update the 
weight value according to a Hebbian or a backpropagation learning 
rule. Memory is accomplished via charge storage on polysilicon 
floating gates, providing long-term retention without refresh. The 
synapses efficiently use the physics of silicon to perform weight up­
dates; the weight value is increased using tunneling and the weight 
value decreases using hot electron injection. The small size and 
low power operation of single transistor synapses allows the devel­
opment of dense synaptic arrays. We describe the design, fabri­
cation, characterization, and modeling of an array of single tran­
sistor synapses. When the steady state source current is used as 
the representation of the weight value, both the incrementing and 
decrementing functions are proportional to a power of the source 
current. The synaptic array was fabricated in the standard 21'm 
double - poly, analog process available from MOSIS. 

1 INTRODUCTION 

The past few years have produced a number of efforts to design VLSI chips which 
"learn from experience." The first step toward this goal is developing a silicon 
analog for a synapse. We have successfully developed such a synapse using only 
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Figure 1: Cross section of the single transistor synapse. Our single transistor 
synapse uses a separate tunneling voltage terminal The pbase implant results in 
a larger threshold voltage, which results in all the electrons reaching the top of the 
Si02 barrier to be swept into the floating gate. 

a single transistor. A synapse has two functional requirements. First, it must 
compute the product of the input multiplied by the strength (the weight) of the 
synapse. Second, the synapse must compute the weight update rule. For a Hebbian 
synapse, the change in the weight is the time average of the product of the input and 
output activity. In many supervised algorithms like backpropagation, this weight 
change is the time average of the product of the input and some fed back error 
signal. Both of these computations are similar in function. We have developed 
single transistor synapses which simultaneously perform long term weight storage, 
compute the product of the input and the weight value, and update the weight 
value according to a Hebbian or a backpropagation learning rule. The combination 
of functions has not previously been achieved with floating gate synapses. 

There are five requirements for a learning synapse. First, the weight should be 
stored permanently in the absence of learning. Second, the synapse must compute 
as an output the product of the input signal with the synaptic weight. Third, each 
synapse should require minimal area, resulting in the maximum array size for a given 
area. Fourth, each synapse should operate with low power dissipation so that the 
synaptic array is not power constrained. And finally, the array should be capable 
of implementing either Hebbian or Backpropagation learning rule for modifying 
the weight on the floating gate. We have designed, fabricated, characterized, and 
modeled an array of single transistor synapses which satisfy these five criteria. We 
believe this is the first instance of a single transistor learning synapse fabricated in 
a standard process. 

2 OVERVIEW 

Figure 1 shows the cross section for the single transistor synapse. Since the float­
ing gate is surrounded by Si02 , an excellent insulator, charge leakage is negligible 
resulting in nearly permanent storage of the weight value. An advantage of using 
floating gate devices for learning rules is the timescales required to add and remove 
charge from the floating gate are well matched to the learning rates of visual and 
auditory signals. In addition, these learning rates can be electronically controlled. 
Typical resolution of charge on the floating gate after ten years is four bits (Holler 
89). The FETs are in a moderately doped (1 x 1017 em-3 ) substrate, to achieve a 
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Figure 2: Circuit diagram of the single - transistor synapse array. Each transis­
tor has a floating gate capacitively coupled to an input column line. A tunneling 
connection (arrow) allows weight increase. Weight decreased is achieved by hot 
electron injection in the transistor itself. Each synapse is capable of simultaneous 
feedforward computations and weight updates. A 2 x 2 section of the array allows 
us to characterize how modifying a single floating gate (such as synapse (1,1)) ef­
fects the neighboring floating gate values. The synapse currents are a measure of 
the synaptic weights, and are summed along each row by the source (Vs) or drain 
(Vd) lines into some soma circuit. 

high threshold voltage. The moderately doped substrate is formed in the 2pm MO­
SIS process by the pbase implant. npn transistor. The implant has the additional 
benefit of increasing the efficiency of the hot electron injection process by increasing 
the electric field in the channel. Each synapse has an additional tunneling junction 
for modifying the charge on the floating gate. The tunneling junction is formed 
with high quality gate oxide separating a well region from the floating gate. 

Each synapse in our synaptic array is a single transistor with its weight stored as 
a charge on a floating silicon gate. Figure 2 shows the circuit diagram of a 2 x 
2 array of synapses. The column 'gate' inputs (V g) are connected to second level 
polysilicon which capacitively couples to the floating gate. The inputs are shared 
along a column. The source (Vs), drain (lid), and tunneling (Viun) terminals are 
shared along a row. These terminals are involved with computing the output current 
and feeding back 'error' signal voltages. Many other synapses use floating gates to 
store the weight value, as in (Holler 89), but none of the earlier approaches update 
the charge on the floating gate during the multiplication of the input and floating 
gate value. In these previous approaches one must drive the floating gate over large 
a voltage range to tunnel electrons onto the floating gate. Synaptic computation 
must stop for this type of weight update. 

The synapse computes as an output current a product of weight and input signal, 
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Figure 3: Output currents from a 2 x 2 section of the synapse array, showing 
180 injection operations followed by 160 tunneling operations. For the injection 
operations, the drain (V dl) is pulsed from 2.0 V upto 3.3 V for 0.5s with Vg1 at 8V 
and Vg2 at OV. For the tunneling operations, the tunneling line (Vtunl) is pulsed 
from 20 V up to 33.5 V with Vg2 at OV and "91 at 8V. Because our measurements 
from the 2 x 2 section come from a larger array, we also display the 'background' 
current from all other synapses on the row. This background current is several orders 
of magnitude smaller than the selected synapse current, and therefore negligible. 

and can simultaneously increment or decrement the weight as a function of its input 
and error voltages. The particular learning algorithm depends on the circuitry at 
the boundaries of the array; in particular the circuitry connected to each of the 
source, drain, and tunneling lines in a row. With charge Qlg on the floating gate 
and Vs equal to 0 the subthreshold source current is described by 

(1) 

where Qo is a device dependent parameter, and UT is the thermal voltage k;. 
The coupling coefficient, 6, of the gate input to the transistor surface potential is 
typically less than 0.1. From ( 1) We can consider the weight as a current I, defined 
by 

( 
~~) 6gVp 6gVp 

ISllnapse = Ioe---qo- e T e T = Ie T (2) 

where Vgo is the input voltage bias, and ~ Vg is Vg - "90. The synaptic current is 
thus the product of the weight, I, and a weak exponential function of the input 
voltage. 

The single transistor learning synapses use a combination of electron tunneling and 
hot electron injection to adapt the charge on the floating gate, and thereby the 
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weight of the synapse. Hot electron injection adds electrons to the floating gate, 
thereby decreasing the weight. Injection occurs for large drain voltages; therefore 
the floating gate charge can be reduced during normal feedforward operation by rais­
ing the drain voltage. Electron tunneling removes electrons from the floating gate, 
thereby increasing the weight. The tunneling line controls the tunneling current; 
thus the floating gate charge can be increased during normal feedforward operation 
by raising the tunneling line voltage. The tunneling rate is modulated by both the 
input voltage and the charge on the floating gate. 

Figure 3 shows an example the nature of the weight update process. The source 
current is used as a measure of the synapse weight. The experiment starts with all 
four synapses set to the same weight current. Then, synapse (1,1) is injected for 180 
cycles to preferentially decrease its weight. Finally, synapse (1,1) is tunneled for 160 
cycles to preferentially increase its weight. This experiment shows that a synapse 
can be incremented by applying a high voltage on tunneling terminals and a low 
voltage on the input, and can be decremented by applying a high voltage on drain 
terminals and a high voltage on the input. In the next two sections, we consider 
the nature of these update functions. In section three we examine the dependence 
of hot electron injection on the source current of our synapses. In section four we 
examine the dependence of electron tunneling on the source current of our synapses. 

3 Hot Electron Injection 

Hot electron injection gives us a method to add electrons to the floating gate. The 
underlying physics of the injection process is to give some electrons enough energy 
and direction in the channel to drain depletion region to surmount the Si02 energy 
barrier. A device must satisfy two requirements to inject an electron on a floating 
gate. First, we need a region where the potential drops more than 3.1 volts in a 
distance of less than 0.2pm to allow electrons to gain enough energy to surmount 
the oxide barrier. Second, we need a field in the oxide in the proper direction 
to collect electrons after they cross the barrier. The moderate substrate doping 
level allows us to easily achieve both effects in subthreshold operation. First, the 
higher substrate doping results in a much higher threshold voltage (6.1 V), which 
guarantees that the field in the oxide at the drain edge of the channel will be in 
the proper direction for collecting electrons over the useful range of drain voltages. 
Second, the higher substrate doping results in higher electric fields which yield 
higher injection efficiencies. The higher injection efficiencies allow the device to have 
a wide range of drain voltages substantially below the threshold voltage. Figure 4 
shows measured data on the change in source current during injection vs. source 
current for several values of drain voltage. 

Because the source current, I, is related to the floating gate charge, Q,g as shown 
in ( 1) and the charge on the floating gate is related to the tunneling or injection 
current (I, g) by 

dQ,g _ I 
dt - Ig 

an approximate model for the change of the weight current value is 

dl I - = -1'9 dt Qo 

(3) 

(4) 
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Figure 4: Source Current Decrement during injection vs. Source Current for several 
values of drain voltage. The injection operation decreases the synaptic weight. V 92 
was held at OV, and V 91 was at 8V during the 0.5s injecting pulses. The change in 
source current is approximately proportional to the source current to the f3 power, 
where of f3 is between 1.7 and 1.85 for the range of drain voltages shown. The change 
in source current in synapse (1,2) is much less than the corresponding change in 
synapse (1,1) and is nearly independent of drain voltage. The effect of this injection 
on synapses (2,1) and (2,2) is negligible. 

The injection current can be approximated over the range of drain voltages shown 
in Fig. 4 by (Hasler 95) 

(5) 

where Vd-c is the voltage from the drain to the drain edge of the channel, Vd is the 
drain voltage, /0 is a slowly varying function defined in (Hasler 95), and Vini is in 
the range of 60m V to 100m V. A is device dependent parameter, Since hot electron 
injection adds electrons to the floating gate, the current into the floating gate (If 9) 
is negative, which results in 

dI IfJ ~ - = -A-e .nJ (6) 
dt Qo 

The model agrees well with the data in Fig. 4, with f3 in the range of 1. 7 - 1.9. 
Injection is very selective along a row with a selectivity coefficient between 102 and 
107 depending upon drain voltage and weight. The injection operations resulted in 
negligible changes in source current for synapses (2,1) and (2,2). 

4 ELECTRON TUNNELING 

Electron tunneling gives us a method for removing electrons from the floating gate. 
Tunneling arises from the fact that an electron wavefunction has finite extent. For a 
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Figure 5: Synapse (1,1) source current increment vs. Source Current for several 
values of tunneling voltage. The tunneling operation increases the synaptic weight. 
V 91 was held at OV and V 92 was 8V while the tunneling line was pulsed for 0.5s 
from 20V to the voltage shown. The change in source current is approximately 
proportional to the a power of the svurce current where a is between 0.7 and 0.9 
for the range of tunneling voltages shown. The effect of this tunneling procedure 
on synapse (2,1) and (2,2) are negligible. The selectivity ratio of synapses on the 
same row is typically between 3-7 for our devices. 

thin enough barrier, this extent is sufficient for an electron to penetrate the barrier. 
An electric field across the oxide will result in a thinner barrier to the electrons on 
the floating gate. For a high enough electric field, the electrons can tunnel through 
the oxide. 

When traveling through the oxide, some electrons get trapped in the oxide, which 
changes the barrier profile. To reduce this trapping effect we tunnel through high 
quality gate oxide, which has far less trapping than interpoly oxide. Both injection 
and tunneling have very stable and repeatable characteristics. When tunneling at 
a fixed oxide voltage, the tunneling current decreases only 50 percent after lOnG of 
charge has passed through the oxide. This quantity of charge is orders of magnitude 
more than we would expect a synapse to experience over a lifetime of operation. 

Figure 5 shows measured data on the change in source current during tunneling as 
a function of source current for several values of tunneling voltage. The functional 
form of tunneling current is of the form (Lenzlinger 69) 

(7) 
where Yo, f Olun are model parameters which roughly correspond with theory. Tun­
neling removes electrons from the floating gate; therefore the floating gate current 
is positive. By expanding Vfg for fixed Viun as VfgO + ~ Vfg and inserting ( 1), the 
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II Parameter I Typical Values II Parameter I Typical Values II 
{3 1.7 - 1.9 Q' 0.7 - 0.9 

Qo .2 pC 6 0.02 - 0.1 
A 8.6 x 10 ·~u Vinj 78mV 

Table 1: Typical measured values of the parameters in the modeling of the single 
transistor synapse array. 

resulting current change is 

dI I Vg ( I )Q 
dt = Q:n e - Viu v/ gO Iso Iso (8) 

where IsO is the bias current corresponding to VfgO. The model qualitatively agrees 
with the data in Fig. 5, with Q' in the range of 0.7- 0.9. The tunneling selectivity 
between synapses on different rows is very good, but tunneling selectivity along 
along a row is poor. We typically measure tunneling selectivity ratios along a row 
between 3 - 7 for our devices. 

5 Model of the Array of Single Transistor Synapses 

Finally, we present an approximate model of our array of these single transistor 
synapses. The learning increment of the synapse at position (i,i) can be modeled 
as 

61l.V 

ISllnapse'j = Iije ~ == Iso WijXj 
dW. . 1 _ Vq _ ;d; _ (9) 
=..:.:...!.L =.:.£t.II..A.e VI"n v/ gO W~x~ 1 _....d....e inj WP.xl? 1 

dt Qo I) ) Qo I) ) 

for the synapse at position (i,i), where Wi,j can be considered the weight value, 
and x j are the effective inputs network. Typical values for the parameters in ( 9 ) 
are given in Table 1. 
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