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Abstract 

Perceptual learning is defined as fast improvement in performance and 
retention of the learned ability over a period of time. In a set of psy­
chophysical experiments we demonstrated that perceptual learning oc­
curs for the discrimination of direction in stochastic motion stimuli. Here 
we model this learning using two approaches: a clustering model that 
learns to accommodate the motion noise, and an averaging model that 
learns to ignore the noise. Simulations of the models show performance 
similar to the psychophysical results. 

1 Introduction 

Global motion perception is critical to many visual tasks: to perceive self-motion, 
to identify objects in motion, to determine the structure of the environment, and 
to make judgements for safe navigation. In the presence of noise, as in random dot 
kinematograms, efficient extraction of global motion involves considerable spatial 
integration. Newsome and Colleagues (1989) showed that neurons in the macaque 
middle temporal area (MT) are motion direction-selective, and perform global inte­
gration of motion in their large receptive fields. Psychophysical studies in humans 
have characterized the limits of spatial and temporal integration in motion (Wata­
maniuk et. aI, 1984) and the nature of the underlying motion computations (Vaina 
et. al 1990). 
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Since the psychophysical and neural substrate of global motion are fairly well un­
derstood, we were interested to see whether the perception of direction in such 
global motion stimuli can improve with practice. Studies specifically addressing 
this question for other early perceptual tasks have shown that improvements of per­
formance obtained in the first experimental session are preserved in a subsequent 
session and retained over weeks. This is considered as perceptual learning (Gibson, 
1953). Psychophysical studies of perceptual learning show that the beneficial effects 
of practice are lost if some stimulus parameters are changed significantly, such as 
orientation, spatial frequency or location in the visual field. Based on the time scale 
necessary for the improvement to occur, two major learning paradigms have been 
used in perceptual learning : slow, progressive learning (several thousand trials are 
required to reach stable performance) and fast !earning (improvement occurs and 
stabilizes in the first 100-200 trials). 

The idea of fast learning and the nature of its limits is attractive from a compu­
tational point of view because it encourages the exploration of practice-dependent 
plasticity found in the adult early visual system (Fregnac et. al., 1988, Gilbert and 
Wiesel 1992). A recent line of research in biologically motivated learning models 
originated by Poggio (Poggio, 1990) takes perceptual learning as evidence that"the 
brain may be able to synthesize-possibly in the cortex-appropriate task-specific 
modules that receive input from retinotopic cells and learn to solve the task after 
a short training phase in which they are exposed to examples of the task". Poggio 
and colleagues (1992) have illustrated this approach in learning vernier hyperacuity. 
Here, we adopted this general framework to study learning of direction in global 
motion. In contrast to Poggio et. aI's supervised learning paradigm, we used unsu­
pervised learning both in the psychophysical experiments and modeling of learning. 
We designed a set of psychophysical tasks to study whether fast learning occurs in 
discrimination of opposite directions of global motion and to explore the limits of 
this learning. To model the learning, we studied two models that differ in the way 
they deal with noise. 

2 Psychophysics 

Ball and Sekuler (1982, 1987) showed that discriminability of the direction of motion 
of two random dot patterns improved with training. In this learning paradigm, more 
than 2000 trials are required for reaching a stable performance. Such a "slow" learn­
ing time scale has been reported for the learning of other perceptual tasks, such as 
vernier acuity (McKee and Westheimer 1978, Fahle 1994), stereoacuity (Fendick and 
Westheimer, 1983; Ramachandran and Braddick 1973) and discrimination of line 
orientation (Vogels and Orban 1985). In contrast to this "slow learning," Fiorentini 
and Berardi (1981) showed that for learning the discrimination of complex grat­
ings with two harmonics of different spatial phase, 100-200 trials suffice. Similarly 
Poggio et. al. (1992) show that a small number of trials suffice for significantly 
improving performance on a vernier hyperacuity task. Both studies discussed the 
specificity of learning to the stimulus attributes. 

In our study, we used a two-alternative, forced-choice psychophysical procedure to 
measure the subject's ability to discriminate between two opposite directions of mo­
tion in dynamic random dot patterns in which 25% of the dots provide a correlated 
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Figure 1: (a) Stimulus: a fraction of the dots (filled circles) move coherently in the 
signal direction; the rest (open circles) move randomly, (b) Fast improvement is observed 
on the first day of testing, and retained over a period of time. Each block consisted of 
40 trials; data points averaged over 4 subjects, and errorbars show standard error. 

motion signal spatially dispersed in a masking motion noise due to random motion 
of the reminder 75% of dots (Fig. 1(a)). Each trial lasted 90 msec during which two 
frames were presented (with inter-frame interval equal to zero). A session consisted 
of 4-6 blocks of 40 trials each. Feedback was not provided during the experimental 
sessions. Observers were required to maintain fixation on a fixation mark placed at 
2° from the imaginary circumference of the stimulus. 

To investigate the effects of practice and their retention, the discrimination of left­
ward vs rightward direction of motion in the display was tested first on each exper­
imental session for 3 consecutive days and repeated 10 days later. The results are 
presented in Fig. 1(b). For most observers, a fast and dramatic improvement was 
seen in the first day. Fig. 1(b) shows that learning was maintained in subsequent 
days, and even ten days later without any training in between. Examination of the 
individual observers' data revealed that improvement of performance occurred only 
if they started above chance level. This suggests that this fast learning might imply 
the improvement of an existing representation of the stimulus. 

In additional experiments, we did not find transfer to another direction of motion 
(up/down), indicating that the learning is selective to specific characteristics of 
the stimulus. Details of experiments testing the limits of the learning appear in 
Vaina et. al (1995). 

3 Modeling 

We propose two paradigms to model the learning found in psychophysics. Both 
use directionally-tuned units with properties similar to those of neurons found in 
MT (Maunsell and Van Essen, 1983). Schematic MT neurons used in our modeling 
integrate global information by summing over localized responses: 

~ -(~(oi-od) 
Xt = ~e 2<1" • (1) 

i=l 

where (Jh is the standard deviation of the tuning, and information from n local 
responses is taken into account. The responses of a collection of such units (each 
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(a) (b) 

Figure 2: Architectures of the models: (a) Learning to Accommodate: Cluster Gaus­
sians !I and h operate on input vector X to decide global motion direction, (b) 
Learning to Ignore: Global motion direction is computed as a weighted combination of 
units' preferred directions. 

tuned to a different direction) form the input vector to the models. 

3.1 Learning to accommodate 

This model is based on grouping similar data. In this paradigm, after learning, the 
network has an estimate of the contribution of noise, and takes it into account when 
performing the task of discriminating between two different directions of motion; 
so, we say that the model "learns to accommodate" the noise. 

Fig 2(a) contains a schematic of this model. The representation vector consists of 
responses Xl.X2, ..• , Xn of the directionally-tuned units .. Clustering is done in the 
space of the representation vectors. The model is a combination of HyperBF-like 
functions and clustering (Poggio et. aI, 1992, Moody and Darken 1989). We use 
gaussians with mean at the cluster centers, a.nd "move" the cluster centers by a 
learning algorithm. 

A cluster gaussian computes a gaussian function of the representation vector for 
the current stimulus from the current center of the corresponding cluster. We say 
"current" because the center is moved as the learning proceeds. At any given point, 
a center is at the current best estimate of the center of the corresponding data 
cluster. More precisely, the learning rule to modify the jth coordinate of the center 
is given by: 

c(t-+:l) = c(t) . + '11 * (x~t) _ c(t) . ) 
W,) W,) '/ ) W,) , (2) 

where w is the index of "winning" cluster and Cw,j is the jth coordinate of the 
center for the wth cluster. This moves the center towards the new data vector X 
that has been judged to belong to the wth cluster. The parameter TJ controls the 
learning rate. 
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3.2 Learning to ignore 

The learning involved in this approach is Hebbian, and is termed "learning to ig­
nore," because in this weighted averaging scheme, as learning occurs, the weights 
for the noise response are progressively reduced to zero, leaving only the contribu­
tion from the signal. In other words, the network learns to ignore the noise (Vaina 
et . al 1995). 

The model's output is a global motion direction. If the weights associated with the 
responses Xl, X2,· . · Xn are WI, W2,'" W n , the global motion direction is calculated 
as 

II -1 (L: wiXisinOi ) 
Uo = tan '" ' w WiXiCOSOj 

where ti is the tuned direction (angle) of the ith unit. A schematic of the model is 
shown in Fig. 2(b). The global direction is judged to be rightward if +Ot > 80 > -Ot. 

We have examined two different learning rules: exposure-based learning, and self­
supervised learning. 

Exposure-based learning: The weight corresponding to a unit is incremented by 
an amount proportional to the current weight. Only units whose response values 
are above a certain threshold are allowed to increase their weights. This learning 
rule favors units that fire consistently: 

(3) 

where rt is a threshold, and 1] is a small fraction that controls the learning rate. 

Self-supervised learning: The weight corresponding to a unit is increased by an 
amount proportional to the product of the current weight and a decreasing func­
tion (exponential) of the angular difference between the calculated global motion 
direction and the direction of tuning of the unit: 

Wi ~ Wi + 1]Wie (- (O; -OO)2/2u e) , if Xi> rt . 

In this case, the model uses its own estimate of the global direction as an internal 
feedback to determine the learning. 

An approach similar to this model for learning vernier hyperacuity was proposed 
by Weiss et. al (1993). 

4 Experiments 

For the simulations, the input (motion) vectors were represented by their angles rel­
ative to the positive horizontal axis (Le. , the magnitude is ignored). The responses of 
the directionally-tuned units can be directly computed from the angles (see Eqn. 1; 
alternatively, cosine tuning functions were used, and similar results were obtained) . 
For each trial, the coherent motion direction was randomly decided. In the exper­
iments, O'h was set to ~ , where nd is the number of unit preferred directions; the 

n d 
directions Ot are chosen by uniformly dividing nd in to 211' . In all the experiments, 
eight preferred directions were used; each trial contained 40 random dots moving 
with a correlation of25% (the same correlation as in the tests with human subjects); 
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Figure 3: Results from typical simulation runs. On the left is the curve for the learning 
to accommodate model (1} = 0.005; cluster (j = 0.5) and on the right are the curves 
for the learning to ignore model. 

each block consisted of 50 trials. The performance is measured by fraction correct, 
corresponding to the fraction of the inputs that were correctly classified. 

For both models, we did simulations to justify the architecture of the models by 
disabling learning, and studying the performance of the models for increasing cor­
relation. The performance was qUalitatively similar to that described in perceptual 
studies of these stimuli in humans and monkeys. 

Learning curves from simulations of both models are shown in Fig. 3. These are 
results from averaging over the performance in ten simulation runs. As can be 
seen, the models learn to do the discrimination. While both models successfully 
learned to do the direction discrimination, there are quantitative differences in the 
learning curves. The learning to accommodate paradigm improved very rapidly 
(somewhat faster than the human subjects). The exposure-based learning rule for the 
learning to ignore paradigm learned at a rate comparable with the human observers. 
However, the final performance in this case was not very stable, and oscillated (not 
shown), consistent with the observations of Weiss et. al (1993) in learning vernier 
hyperacuity. The self-supervised rule, on the other hand, reached a stable level 
of performance, but the learning was slower; the reason is that this learning rule 
exhibits instability if a high value of learning rate (1}) is used. 

If either model trained on inputs containing horizontal correlated motion was 
later presented with inputs containing vertical correlated motion, the performance 
dropped to pre-training levels. This non-transfer is consistent with psychophysical 
results mentioned in Section 2. 

5 Discussion 

In this study, we focused on learning of global motion direction, and not on motion 
perception. Motion perception is well-understood both physiologically and psy-
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chophysically. In a series of studies of neuronal correlates of the perceptual decision 
of direction of motion in stochastic motion signals like the stimuli used here, to­
gether with studies of performance on these stimuli on monkeys with MT lesions, 
Newsome and his collaborators (for a review, Newsome et. aI, 1989) provide strong 
support for the hypothesis that perceptual judgements of motion direction are by 
and large based on the directional signals carried by MT neurons. 

Salzman and Newsome (1994) reported that in trained monkeys, the perception of 
motion in stochastic noise is more likely mediated by a winner-take-all mechanism 
than by a weighted averaging mechanism. Interestingly, our clustering model, after 
learning, is behaviorally similar to the winner-take-all mechanism: the dominating 
component of the representation results in the assignment to the closest cluster. 

Our psychophysical studies clearly demonstrate that perceptual learning of global 
motion direction occurs. While significant progress has been made to understand 
the mechanisms and underlying circuitry of learning (Zohary et. al 1994) as yet 
there is no satisfactory biologically explanation of how and where this learning may 
occur (Zohary and Newsome 1994). 

Our focus in this paper was on computational models of learning direction in global 
motion. For this, we proposed two approaches, which differ in the way they deal 
with noise: one learns to accommodates noise, and the other learns to ignore it. We 
do not advocate that one or the other of the models we proposed here provides the 
biologically correct choice for this task. However, together with the psychophysics 
described here these models suggest new experiments which we are now exploring 
both psychophysically and computationally. 

We hope that by closely connecting models and psychophysics while keeping in 
mind the aim of neuronal compatibility, we will make progress in understanding 
how the cortex learns so fast to discriminate direction of motion in extremely noisy 
situations. 
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