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Abstract 

We have continued our study of a parallel perturbative learning 
method [Alspector et al., 1993] and implications for its implemen­
tation in analog VLSI. Our new results indicate that, in most cases, 
a single parallel perturbation (per pattern presentation) of the func­
tion parameters (weights in a neural network) is theoretically the 
best course. This is not true, however, for certain problems and 
may not generally be true when faced with issues of implemen­
tation such as limited precision. In these cases, multiple parallel 
perturbations may be best as indicated in our previous results. 

1 INTRODUCTION 

Motivated by difficulties in analog VLSI implementation of back-propagation 
[Rumelhart et al., 1986] and related algorithms that calculate gradients based on 
detailed knowledge of the neural network model, there were several similar re­
cent papers proposing to use a parallel [Alspector et al., 1993, Cauwenberghs, 1993, 
Kirk et al., 1993] or a semi-parallel [Flower and Jabri, 1993] perturbative technique 
which has the property that it measures (with the physical neural network) rather 
than calculates the gradient. This technique is closely related to methods of stochas­
tic approximation [Kushner and Clark, 1978] which have been investigated recently 
by workers in fields other than neural networks. [Spall, 1992] showed that averaging 
multiple parallel perturbations for each pattern presentation may be asymptotically 
preferable in the presence of noise. Our own results [Alspector et al., 1993] indicated 
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that multiple parallel perturbations are also preferable when only limited precision 
is available in the learning rate which is realistic for a physical implementation. In 
this work we have investigated whether multiple parallel perturbations for each pat­
tern are non-asymptotically preferable theoretically (without noise). We have also 
studied this empirically, to the limited degree that simulations allow, by removing 
the precision constraints of our previous work. 

2 GRADIENT ESTIMATION BY PARALLEL WEIGHT 
PERTURBATION 

Following our previous work, one can estimate the gradient of the error, E( w), with 
respect to any weight, Wi, by perturbing Wi by 6w1 and measuring the change in 
the output error, 6E, as the entire weight vector, W, except for component Wi is 
held constant. 

6E E(w + 6;1) - E(w) 
6w1 6Wi 

We now consider perturbing all weights simultaneously. However, we wish to have 
the perturbation vector, 6w, chosen uniformly on a hypercube. Note that this 
requires only a random sign multiplying a fixed perturbation and is natural for 
VLSI using a parallel noise generator [Alspector et al., 1991J. 

This leads to the approximation (ignoring higher order terms) 

w 
6E 8E 2:(8E) (6Wi) - - -+ - -
6w· - 8w· 8w· 6w·· , 'i¢1 ] , 

(1 ) 

The last term has expectation value zero for random and independently distributed 
6w1• The weight change rule 

where 1] is a learning rate, will follow the gradient on the average but with consid­
erable noise. 

For each pattern, one can reduce the variance of the noise term in (1) by repeating 
the random parallel perturbation many times to improve the statistical estimate. If 
we average over P perturbations, we have 

where p indexes the perturbation number. 
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3 THEORETICAL RELATIVE EFFICIENCY 

3.1 BACKGROUND 

Spall [Spall, 1992] shows in an asymptotic sense that multiple perturbations may be 
faster if only a noisy measurement of E( tV) is available, and that one perturbation 
is superior otherwise. His results are asymptotic in that they compare the rate of 
convergence to the local minimum if the algorithms run for infinite time. Thus, his 
results may only indicate that 1 perturbation is superior close to a local minimum. 
Furthermore, his result implicitly assumes that P perturbations per weight update 
takes P times as long as 1 perturbation per weight update. Experience shows 
that the time required to present patterns to the hardware is often the bottleneck 
in VLSI implementations of neural networks [Brown et al., 1992]. In a hardware 
implementation of a perturbative learning algorithm, a few perturbations might be 
performed with no time penalty while waiting for the next pattern presentation. 

The remainder of this section sketches an argument that multiple perturbations 
may be desirable for some problems in a non-asymptotic sense, even in a noise 
free environment and under the assumption of a multiplicative time penalty for 
performing multiple perturbations. On the other hand, the argument also shows 
that there is little reason to believe in practice that any given problem will be 
learned more quickly by multiple perturbations. Space limitations prevent us from 
reproducing the full argument and discussion of its relevance which can be found 
in [Lippe, 1994]. 

The argument fixes a point in weight space and considers the expectation value of 
the change in the error induced by one weight update under both the 1 pertur­
bation case and the multiple perturbation case. [Cauwenberghs, 1994] contains a 
somewhat related analysis of the relative speed of one parallel perturbation and 
weight perturbation as described in [Jabri and Flower, 1991]. The analysis is only 
truly relevant far from a local minimum because close to a local minimum the vari­
ance of the change of the error is as important as the mean of the change of the 
error. 

3.2 Calculations 

If P is the number of perturbations, then our learning rule is 

-'TJ ~ 6E(p) 
~Wi = P L.J~. 

P=1 6wi 

If W is the number of weights, then ~E, calculated to second order in 'TJ, is 

w 8E 1 W W 82E 

~E = '" -8 ~Wi + - '" '" 8 8 ~Wi~Wj. L.J W· 2 L.J L.J W· W · 
i=l' i=l j=l • J 

Expanding 6E(p) to second order in (j (where 6Wi = ±(j), we obtain 

W 8E W W 8 2 
6E(p) = '" -6w~P) + ! "'" E 6w~P)6w(P). 

L.J 8w' J 2 L.J L.J 8w' 8wk J k 
j=l J j=l k=l J 

(2) 

(3) 

(4) 
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[Lippe, 1994] shows that combining (2)-(4), retaining only first and second order 
terms, and taking expectation values gives 

2 

< l:1E >= -TJX + ~ (Y + PZ) (5) 

where 

x w (8E)2 
L 8w' ' 
i=l ' 

Z 

Y 

Note that first term in (5) is strictly less than or equal to 0 since X is a sum of 
squares l . The second term, on the other hand, can be either positive or negative. 
Clearly then a sufficient condition for learning is that the first term dominates the 
second term. By making TJ small enough, we can guarantee that learning occurs. 
Strictly speaking, this is not a necessary condition for learning. However, it is 
important to keep in mind that we are only focusing on one point in weight space. If, 
at this point in weight space, < l:1E > is negative but the second term's magnitude 
is close to the first term's magnitude, it is not unlikely that at some other point 
in weight space < l:1E > will be positive. Thus, we will assume that for efficient 
learning to occur, it is necessary that TJ be small enough to make the first term 
dominate the second term. 

Assume that some problem can be successfully learned with one perturbation, at 
learning rate TJ(I). Then the first order term in (5) dominates the second order 
terms. Specifically, at any point in weight space we have, for some large constant 
J1., 

TJ(I)X ~ J1.TJ(I)2IY + ZI 
In order to learn with P perturbations, we apparently need 

TJ( P)X ~ J1. TJ(~)2 IY + P ZI (6) 

The assumption that the first order term of (5) dominates the second order terms 
implies that convergence time is proportional to ,.lp), Thus, learning is more effi­
cient in the multiple perturbation case if 

J1.TJ(P) > J1.TJ(I) 
P 

(7) 

It turns out, as shown in [Lippe, 1994] that the conditions (6) and (7) can be met 
simultaneously with multiple perturbations if =f ~ 2. 

lIf we are at a stationary point then the first term in (5) is O. 
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It is shown in [Lippe, 1994], by using the fact that the Hessian of a quadratic 
function with a minimum is positive semi-definite, that if E is guadratic and has 
a minimum, then Y and Z have the same sign (and hence =f < 2). Any well 
behaved function acts quadratically sufficiently close to a stationary point. Thus, 
we can not get < flE > more than a factor of P larger by using P perturbations 
near local minima of well behaved functions. Although, as mentioned earlier, we 
are entirely ignoring the issue of the variance of flE, this may be some indication 
of the asymptotic superiority of 1 perturbation. 

3.3 Discussion of Results 

The result that multiple perturbations are superior when -i ~ 2 may seem some­
what mysterious . It sheds some light on our answer to rewrite (5) as 

Y 
< flE >= -"IX + "I2(p + Z). 

For strict gradient descent, the corresponding equation is 

< flE >= flE = -"IX + "I2Z. 

The difference between strict gradient descent and perturbative gradient descent, 
on average, is the second order term "I2~. This is the term which results from not 
following the gradient exactly, and it Obviously goes down as P goes up and the 
gradient measurement becomes more accurate. Thus, if Z and Y have different 
signs, P can be used to make the second order term disappear. There is no way 
to know whether this situation will occur frequently. Furthermore, it is important 
to keep in mind that if Y is negative and Z is positive, then raising P may make 
the magnitude of the second order term smaller, but it makes the term itself larger. 
Thus, in general, there is little reason to believe that multiple perturbations will 
help with a randomly chosen problem. 

An example where multiple perturbations help is when we are at a point where 
the error surface is convex along the gradient direction, and concave in most other 
directions. Curvature due to second derivative terms in Y and Z help when the 
gradient direction is followed, but can hurt when we stray from the gradient. In 
this case, Z < 0 and possibly Y > 0, so multiple perturbations might be preferable 
in order to follow the gradient direction very closely. 

4 SIMULATIONS OF SINGLE AND MULTIPLE 
PARALLEL PERTURBATION 

4.1 CONSTANT LEARNING RATES 

The second order terms in (5) can be reduced either by using a small learning rate, 
or by using more perturbations, as discussed briefly in [Cauwenberghs, 1993]. Thus, 
if "I is kept constant, we expect a minimum necessary number of perturbations in 
order to learn. This in itself might be of importance in a limited precision imple­
mentation. If there is a non-trivial lower bound on "I, then it might be necessary 
to use multiple perturbations in order to learn. This is the effect that was noticed 
in [Alspector et al., 1993]. At that time we thought that we had found empirically 
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Table 1: Running times for the first initial weight vector 
P TJ Time for < .1 Time for < .5 
1 .0005 1,121,459 32,179 
1 .001 831 , 684 18,534 
1 .002 784, 768 11,008 
1 .003 4 94,029 9,933 
1 .004 1,695,974 9,728 
7 .00625 707,840 23,834 
7 .008 583,654 16,845 
7 .0125 922,880 13,261 
7 .025 1,010,355 12,006 
7 .035 Not tested 17,024 

that multiple perturbations were necessary for learning. The problem was that we 
failed to decrease the learning rate with the number of perturbations. 

4.2 EMPIRICAL RELATIVE EFFICIENCY OF SINGLE AND 
MULTIPLE PERTURBATION ALGORITHMS 

Section 3 showed that, in theory, multiple perturbations might be faster than 1 per­
turbation. We investigated whether or not this is the case for the 7 input hamming 
error correction problem as described in [Biggs, 1989]. This is basically a nearest 
neighbor problem. There exist 16 distinct 7 bit binary code words. When presented 
with an arbitrary 7 bit binary word, the network is to output the code word with 
the least hamming distance from the input. 

After preliminary tests with 50, 25, 7, and 1 perturbation, it seemed that 7 per­
turbations provided the fastest learning, so we concentrated on running simulations 
for both the 1 perturbation and the 7 perturbation case. Specifically, we chose two 
different (randomly generated) initial weight vectors, and five different seeds for the 
pseudo-random function used to generate the bWi. For each of these ten cases, we 
tested both 1 perturbation and 7 perturbations with various learning rates in order 
to obtain the fastest possible learning. 

The 128 possible input patterns were repeatedly presented in order. We investigated 
how many pattern presentations were necessary to drive the MSE below .1 and 
how many presentations were necessary to drive it below .5. Recalling the theory 
developed in section 3, we know that multiple perturbations can be helpful only far 
away from a stationary point. Thus, we expected that 7 perturbations might be 
quicker reaching .5 but would be slower reaching .1. 

The results are summarized in tables 1 and 2. Each table summarizes information 
for a different initial weight vector. All of the data presented are averaged over 5 
runs, one with each of the different random seeds. The two columns labeled "Time 
for < .5" and "Time for < .1" are adjusted according to the assumption that one 
weight update at 7 perturbations takes 7 times as long as one weight update at 
1 perturbation. In each table, the following four numbers appear in italics: the 
shortest time to reach .1 with 1 perturbation, the shortest time to reach .1 with 7 
perturbations, the shortest time to reach .5 with 1 perturbation, and the shortest 
time to reach .5 with 7 perturbations. 

7 perturbations were a loss in three out of four of the experiments. Surprisingly, 
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Table 2: Running times for the second initial weight vector 
l' 'T/ TIme for < .1 TIme for < .5 
1 .001 928,236 22,133 
1 .002 719 , 078 12,817 
1 .003 154,139 10,675 
1 .004 1,603,354 11,150 
1 .00625 629 , 530 21,059 
1 .008 611,610 19,112 
1 .0125 912,333 15,949 
1 .025 1,580,442 14,515 
1 .035 Not tested 11,141 

the one time that multiple perturbations helped was in reaching .1 from the second 
initial weight vector. There are several possible explanations for this. To begin 
with, these learning times are averages over only five simulations each, which makes 
their statistical significance somewhat dubious. Unfortunately, it was impractical 
to perform too many experiments as the data obtained required 180 computer sim­
ulations, each of which sometimes took more than a day to complete. 

Another possible explanation is that .1 may not be "asymptotic enough." The 
numbers .5 and .1 were chosen somewhat arbitrarily to represent non-asymptotic 
and asymptotic results. However, there is no way of predicting from the theory how 
close the error must be to its minimum before asymptotic results become relevant. 

The fact that 1 perturbation outperformed 7 perturbations in three out of four cases 
is not surprising. As explained in section 3, there is in general no reason to believe 
that multiple perturbations will help on a randomly chosen problem. 

5 CONCLUSION 

Our results show that, under ideal computational conditions, where the learning 
rate can be adjusted to proper size, that a single parallel perturbation is, except 
for unusual problems, superior to multiple parallel perturbations. However, under 
the precision constraints imposed by analog VLSI implementation, where learning 
rates may not be adjustable and presenting a pattern takes longer than performing 
a perturbation, multiple parallel perturbations are likely to be the best choice. 
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