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Abstract 

We describe a framework for real-time tracking of facial expressions 
that uses neurally-inspired correlation and interpolation methods. A 
distributed view-based representation is used to characterize facial state, 
and is computed using a replicated correlation network. The ensemble 
response of the set of view correlation scores is input to a network based 
interpolation method, which maps perceptual state to motor control states 
for a simulated 3-D face model. Activation levels of the motor state 
correspond to muscle activations in an anatomically derived model. By 
integrating fast and robust 2-D processing with 3-D models, we obtain a 
system that is able to quickly track and interpret complex facial motions 
in real-time. 

1 INTRODUCTION 

An important task for natural and artificial vision systems is the analysis and interpretation 
of faces. To be useful in interactive systems and in other settings where the information 
conveyed is of a time critical nature, analysis of facial expressions must occur quickly, or be 
oflittle value. However, many of the traditional computer vision methods for estimating and 
modeling facial state have proved difficult to perform fast enough for interactive settings. 
We have therefore investigated neurally inspired mechanisms for the analysis of facial 
expressions. We use neurally plausible distributed pattern recognition mechanisms to make 
fast and robust assessments of facial state, and multi-dimensional interpolation networks to 
connect these measurements to a facial model. 

There are many potential applications of a system for facial expression analysis. Person-
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alized interfaces which sense a users emotional state, ultra-low bitrate video conferencing 
which sends only facial muscle activations, as well as the enhanced recognition systems 
mentioned above. We have focused on a application in computer graphics which stresses 
both the analysis and synthesis components of our system: interactive facial animation. 

In the next sections we develop a computational framework for neurally plausible expression 
analysis, and the connection to a physically-based face model using a radial basis function 
method. Finally we will show the results of these methods applied to the interactive 
animation task, in which an computer graphics model of a face is rendered in real time, and 
matches the state of the users face as sensed through a conventional video camera. 

2 EXPRESSION MODELINGffRACKING 

The modeling and tracking of expressions and faces has been a topic of increasing interest 
recently. In the neural network field, several successful models of character expression 
modeling have been developed by Poggio and colleagues. These models apply multi­
dimensional interpolation techniques, using the radial basis function method, to the task 
of interpolating 2D images of different facial expression. Librande [4] and Poggio and 
Brunelli [9] applied the Radial Basis Function (RBF) method to facial expression mod­
eling, using a line drawing representation of cartoon faces. In this model a small set of 
canonical expressions is defined, and intermediate expressions constructed via the interpo­
lation technique. The representation used is a generic "feature vector", which in the case of 
cartoon faces consists of the contour endpoints. Recently, Beymer et al. [1] extended this 
approach to use real images, relying on optical flow and image warping techniques to solve 
the correspondence and prediction problems, respectively. 

RBF-based techniques have the advantage of allowing for the efficient and fast compu­
tation of intermediate states in a representation. Since the representation is simple and 
the interpolation computation straight-forward, real-time implementations are practical on 
conventional systems. These methods interpolate between a set of 2D views, so the need for 
an explicit 3-D representation is sidestepped. For many applications, this is not a problem, 
and may even be desirable since it allows the extrapolation to "impossible" figures or ex­
pressions, which may be of creative value. However, for realistic rendering and recognition 
tasks, the use of a 3-D model may be desirable since it can detect such impossible states. 

In the field of computer graphics, much work has been done on on the 3-D modeling of 
faces and facial expression. These models focus on the geometric and physical qualities 
of facial structure. Platt and B adler [7], Pieper [6], Waters [11] and others have developed 
models of facial structure, skin dynamics, and muscle connections, respectively, based on 
available anatomical data. These models provide strong constraints for the tracking of 
feature locations on a face. Williams et. al. [12] developed a method in which explicit 
feature marks are tracked on a 3-D face by use of two cameras. Terzopoulos and Waters [10] 
developed a similar method to track linear facial features, estimate corresponding parameters 
of a three dimensional wireframe face model, and reproduce facial expression. A significant 
limitation of these systems is that successful tracking requires facial markings. Essa and 
Pentland [3] applied optical flow methods (see also Mase [5]) for the passive tracking of 
facial motion, and integrated the flow measurement method into a dynamic system model. 
Their method allowed for completely passive estimation of facial expressions, using all the 
constraints provided by a full 3-D model of facial expression. 

Both the view based method of Beymer et. al. and the 3-D model of Essa and Pentland rely 
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Figure 1: (a) Frame of video being processed to extract view model. Outlined rectangle 
indicates area of image used for model. (b) View models found via clustering method on 
training sequence consisting of neutral, smile, and surprise expressions. 

on estimates of optic flow, which are difficult to compute reliably, especially in real-time. 
Our approach here is to combine interpolated view-based measurements with physically 
based models, to take advantage of the fast interpolation capability of the RBF and the 
powerful constraints imposed by physically based models. We construct a framework in 
which perceptual states are estimated from real video sequences and are interpolated to 
control the motor control states of a physically based face model. 

3 VIEW-BASED FACE PERCEPTION 

To make reliable real-time measurements of a complex dynamic object, we use a distributed 
representation corresponding to distinct views of that object. Previously, we demonstrated 
the use of this type of representation for the tracking and recognition of hand gestures [2]. 
Like faces, hands are complex objects with both non-rigid and rigid dynamics. Direct use 
of a 3-D model for recognition has proved difficult for such objects, so we developed a 
view-based method for representation. Here we apply this technique to the problem of facial 
representation, but extend the scheme to connect to a 3-D model for high-level modeling 
and generation/animation. With this, we gain the representational power and constraints 
implied by the 3-D model as a high-level representation; however the 3-D model is only 
indirectly involved in the perception stage, so we can still have the same speed and reliability 
afforded by the view-based representation. 

In our method each view characterizes a particular aspect or pose of the object being 
represented. The view is stored iconically, that is, it is a literal image or template (but 
with some point-wise statistics) of the appearance of the object in that aspect or pose. A 
match criteria is defined between views and input images; usually a normalized correlation 
function is used, but other criteria are possible. An input image is represented by the 
ensemble of match scores from that image to the stored views. 

To achieve invariance across a range of transformations, for example translation, rotation 
and/or scale, units which compute the match score for each view are replicated at different 
values of each transformation. I The unit which has maximal response across all values of 
the transformation is selected, and the ensemble response of the view units which share the 

1 In a computer implementation this exhaustive sampling may be impractical due to the num­
ber of units needed, in which case this stage may be approximated by methods which are hybrid 
sampling/search methods. 
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same transformation values as the selected unit is stored as the representation for the input 
image. We set the perceptual state X to be a vector containing this ensemble response. 

If the object to be represented is fully known a priori, then methods to generate views can 
be constructed by analysis of the aspect graph if the object is polyhedral, or in general 
by rendering images of the object at evenly spaced rotations. However, in practice good 
3-D models that are useful for describing image intensity values are rare2, so we look to 
data-driven methods of acquiring object views. 

As described in [2] a simple clustering algorithm can find a set of views that "span" a 
training sequence of images, in the sense that for each image in the sequence at least one 
view is within some threshold similarity to that image. The algorithm is as follows. Let 
V be the current set of views for an object (initially one view is specified manually). For 
each frame I of a training sequence, if at least one v E V has a match value M (v, 1) that is 
greater than a threshold (J, then no action is performed and the next frame is processed. If 
no view is close, then I is used to construct a new view which is added to the view set. A 
view v' is created using a window of I centered at the location in the previous image where 
the closest view was located. (All views usually share the same window size, determined 
by the initial view.) The view set is then augmented to include the new view: V = V u v'. 
This algorithm will find a set of views which well-characterizes an object across the range 
of poses or expressions contained in the training sequence. For example, in the domain of 
hand gestures, inputing a training sequence consisting of a waving hand will yield views 
which contain images of the hand at several different rotations. In the domain of faces, 
when input a training sequence consisting of a user performing 3 different expressions, 
neutral, smile, and surprise, this algorithm (with normalized correlation and (J = 0.7) found 
three views corresponding to these expressions to represent the face, as shown in Figure 
l(b). These 3 views serve as a good representation for the face of this user as long as his 
expression is similar to one in the training set. 

The major advantage of this type of distributed view-based representation lies in the reduc­
tion of the dimensionality of the processing that needs to occur for recognition, tracking, or 
control tasks. In the gesture recognition domain, this dimensionality reduction allowed for 
conventional recognition strategies to be applied successfully and in real-time, on examples 
where it would have been infeasible to evaluate the recognition criteria on the full signal. In 
the domain explored in this paper it makes the interpolation problem of much lower order: 
rather than interpolate from thousands of input dimensions as would be required when the 
input is the image domain, the view domain for expression modeling tasks typically has on 
the order of a dozen dimensions. 

4 3-D MODELINGIMOTOR CONTROL 

To model the structure of the face and the dynamics of expression performance, we use the 
physically based model of Essa et. al. This model captures how expressions are generated 
by muscle actuations and the resulting skin and tissue deformations. The model is capable 
of controlled nonrigid deformations of various facial regions, in a fashion similar to how 
humans generate facial expressions by muscle actuations attached to facial tissue. Finite 
Element methods are used to model the dynamics of the system. 

2 As opposed to modeling forces and shape deformations, for which 3-D models are useful and 
indeed are used in the method presented here. 
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Figure 2: (a) Face images used as input, (b) normalized correlation scores X(t) for each 
view model, (c) resulting muscle control parameters Y(t), (d) rendered images of facial 
model corresponding to muscle parameters. 
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This model is based on the mesh developed by Platt and Badler [7], extended into a 
topologically invariant physics-based model through the addition of a dynamic skin and 
muscle model [6, 11]. These methods give the facial model an anatomically-based facial 
structure by modeling facial tissue/skin, and muscle actuators, with a geometric model to 
describe force-based deformations and control parameters. 

The muscle model provides us with a set of control knobs to drive the facial state, defined 
to be a vector Y. These serve to define the motor state of the animated face. Our task now 
is to connect the perceptual states of the observed face to these motor states. 

5 CONNECTING PERCEPTION WITH ACTION 

We need to establish a mapping from the perceptual view scores to the appropriate muscle 
activations on the 3-D face model. To do this, we use multidimensional interpolation 
strategies implemented in network form. 

Interpolation requires a set of control points or exemplars from which to derive the desired 
mapping. Example pairs of real faces and model faces for different expressions are presented 
to the interpolation method during a training phase. This can be done in one of two ways, 
with either a user-driven or model-driven paradigm. In the model-driven case the muscle 
states are set to generate a particular expression by an animator/programmer and then the 
user is asked to make the equivalent expression. The resulting perceptual (view-model) 
scores are then recorded and paired with the muscle activation levels. In the user-driven 
case, the user makes an expression of hislher own choosing, and the optic flow method 
of Essa et. al. is used to derive the corresponding muscle activation levels. The model­
driven paradigm is simpler and faster, but the user-driven paradigm yields more detailed 
and authentic facial expressions. 

We use the Radial Basis Function (RBF) method presented in [8], and define the interpolated 
motor controls to be a weighted sum of radial functions centered at each example: 

n 

Y = I:ci9(X - Xi) (1) 
i=1 

where Y are the muscle states, X are the observed view-model scores, Xi are the example 
scores, 9 is an RBF (and in our case was simply a linear ramp 9(§) = II§II), and the weights 
Ci are computed from the example motor values Yi using the pseudo-inverse method [8]. 

6 INTERACTIVE ANIMATION SYSTEM 

The correlation network, RBF interpolator, and facial model described above have been 
combined into a single system for interactive animation. The entire system can be updated 
at over 5 Hz, using a dedicated single board accelerator to compute the correlation network, 
and an SGI workstation to render the facial mesh. · Here we present two examples of the 
processing performed by the system, using different strategies for coupling perceptual and 
motor state. 

Figure 2 illustrates one example of real-time facial expression tracking using this system, 
using a full-coupling paradigm. Across the top, labeled (a), are five frames of a video 
sequence of a user making a smile expression. This was one of the expressions used in the 
training sequence for the view models shown in Figure 1 (b), so they were applicable to be 
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Figure 3: (a) Processing of video frame with independent view model regions for eyes, 
eye-brows, and mouth region. (b) Overview shot of full system. User is on left, vision 
system and camera is on right, and animated face is in the center of the scene. The animated 
face matches the state of the users face in real-time, including eye-blinks (as is the case in 
this shot.) 

used here. Figure 2(b) shows the correlation scores computed for each of the 3 view models 
for each frame of the sequence. This constituted the perceptual state representation, X(t). 

In this example the full face is coupled with the full suite of motor control parameters. An 
RBF interpolator was trained using perceptual/motor state pairs for three example full-face 
expressions (neutral, smile, surprise); the resulting (interpolated) motor control values, 
yet), for the entire sequence are shown in Figure 2(c). Finally, the rendered facial mesh for 
five frames of these motor control values is shown in Figure 2( d). 

When there are only a few canonical expressions that need be tracked/matched, this full-face 
template approach is robust and simple. However if the user wishes to exercise independent 
control of the various regions of the face, then the full coupling paradigm will be overly 
restrictive. For example, if the user trains two expressions, eyes closed and eyes open, and 
then runs the system and attempts to blink only one eye, the rendered face will be unable to 
match it. (In fact closing one eye leads to the rendered face half-closing both eyes.) 

A solution to this is to decouple the regions of the face which are independent geometrically 
(and to some degree, in terms of muscle effect.) Under this paradigm, separate correla­
tion networks are computed for each facial regions, and multiple RBF interpolations are 
performed for each system. Each interpolator drives a distinct subset of the motor state 
vector. Figure 3(a) shows the regions used for decoupled local templates. In these examples 
independent regions were used for each eye, eyebrow, and the mouth region. 

Finally, figure 3 (b) shows a picture of the set-up of the system as it is being run in an 
interactive setting. The animated face mimics the facial state of the user, matching in real 
time the position of the eyes, eyelids, eyebrows and mouth of the user. In the example 
shown in this picture, the users eyes are closed, so the animated face's eyes are similarly 
closed. Realistic performance of animated facial expressions and gestures are are possible 
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through this method, since the timing and levels of the muscle activations react immediately 
to changes in the users face. 

7 CONCLUSION 

We have explored the use of correlation networks and Radial Basis Function techniques for 
the tracking of real faces in video sequences. A distributed view-based representation is 
computed using a network of replicated normalized correlation units, and offers a fast and 
robust assesment of perceptual state. 3-D constraints on facial shape are achieved through 
the use of a an anatomically derived facial model, whose muscle activations are controled 
via interolated perceptual states using the RBF method. 

With this framework we have been able to acheive the fast and robust analysis and synthesis 
of facial expressions. A modeled face mimics the expression of a user in real-time, using 
only a conventional video camera sensor and no special marking on the face of the user. This 
system has promise as a new approach in the interactive animation, video tele-conferencing, 
and personalized interface domains. 
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