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Abstract 

Learning of continuous valued functions using neural network en­
sembles (committees) can give improved accuracy, reliable estima­
tion of the generalization error, and active learning. The ambiguity 
is defined as the variation of the output of ensemble members aver­
aged over unlabeled data, so it quantifies the disagreement among 
the networks. It is discussed how to use the ambiguity in combina­
tion with cross-validation to give a reliable estimate of the ensemble 
generalization error, and how this type of ensemble cross-validation 
can sometimes improve performance. It is shown how to estimate 
the optimal weights of the ensemble members using unlabeled data. 
By a generalization of query by committee, it is finally shown how 
the ambiguity can be used to select new training data to be labeled 
in an active learning scheme. 

1 INTRODUCTION 

It is well known that a combination of many different predictors can improve predic­
tions. In the neural networks community "ensembles" of neural networks has been 
investigated by several authors, see for instance [1, 2, 3]. Most often the networks 
in the ensemble are trained individually and then their predictions are combined. 
This combination is usually done by majority (in classification) or by simple aver­
aging (in regression), but one can also use a weighted combination of the networks . 
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At the workshop after the last NIPS conference (December, 1993) an entire session 
was devoted to ensembles of neural networks ( "Putting it all together", chaired by 
Michael Perrone) . Many interesting papers were given, and it showed that this area 
is getting a lot of attention. 

A combination of the output of several networks (or other predictors) is only useful 
if they disagree on some inputs. Clearly, there is no more information to be gained 
from a million identical networks than there is from just one of them (see also 
[2]). By quantifying the disagreement in the ensemble it turns out to be possible 
to state this insight rigorously for an ensemble used for approximation of real­
valued functions (regression). The simple and beautiful expression that relates the 
disagreement (called the ensemble ambiguity) and the generalization error is the 
basis for this paper, so we will derive it with no further delay. 

2 THE BIAS-VARIANCE TRADEOFF 

Assume the task is to learn a function J from RN to R for which you have a sample 
of p examples, (xiJ , yiJ), where yiJ = J(xiJ) and J.t = 1, . . . ,p. These examples 
are assumed to be drawn randomly from the distribution p(x) . Anything in the 
following is easy to generalize to several output variables. 

The ensemble consists of N networks and the output of network a on input x is 
called va (x). A weighted ensemble average is denoted by a bar , like 

V(x) = L Wa Va(x). (1) 
a 

This is the final output of the ensemble. We think of the weight Wa as our belief in 
network a and therefore constrain the weights to be positive and sum to one. The 
constraint on the sum is crucial for some of the following results. 

The ambiguity on input x of a single member of the ensemble is defined as aa (x) = 
(V a(x) - V(x))2 . The ensemble ambiguity on input x is 

a(x) = Lwaaa(x) = LWa(va(x) - V(x))2 . (2) 
a a 

It is simply the variance of the weighted ensemble around the weighed mean, and 
it measures the disagreement among the networks on input x. The quadratic error 
of network a and of the ensemble are 

(J(x) - V a(x))2 

(J(x) - V(X))2 

respectively. Adding and subtracting J( x) in (2) yields 

a(x) = L Wafa(X) - e(x) 
a 

(3) 

(4) 

(5) 

(after a little algebra using that the weights sum to one) . Calling the weighted 
average of the individual errors €( x) = La Wa fa (x) this becomes 

e(x) = €(x) - a(x). (6) 
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All these formulas can be averaged over the input distribution. Averages over the 
input distribution will be denoted by capital letter, so 

E 

J dxp(xVl! (x) 

J dxp(x)aa(x) 

J dxp(x)e(x). 

(7) 

(8) 

(9) 

The first two of these are the generalization error and the ambiguity respectively 
for network n , and E is the generalization error for the ensemble. From (6) we then 
find for the ensemble generalization error 

(10) 

The first term on the right is the weighted average of the generalization errors of 
the individual networks (E = La waEa), and the second is the weighted average 
of the ambiguities (A = La WaAa), which we refer to as the ensemble ambiguity. 

The beauty of this equation is that it separates the generalization error into a term 
that depends on the generalization errors of the individual networks and another 
term that contain all correlations between the networks . Furthermore, the corre­
lation term A can be estimated entirely from unlabeled data, i. e., no knowledge is 
required of the real function to be approximated. The term "unlabeled example" is 
borrowed from classification problems, and in this context it means an input x for 
which the value of the target function f( x) is unknown. 

Equation (10) expresses the tradeoff between bias and variance in the ensemble, 
but in a different way than the the common bias-variance relation [4] in which the 
averages are over possible training sets instead of ensemble averages. If the ensemble 
is strongly biased the ambiguity will be small , because the networks implement very 
similar functions and thus agree on inputs even outside the training set. Therefore 
the generalization error will be essentially equal to the weighted average of the 
generalization errors of the individual networks. If, on the other hand , there is a 
large variance , the ambiguity is high and in this case the generalization error will 
be smaller than the average generalization error . See also [5]. 

From this equation one can immediately see that the generalization error of the 
ensemble is always smaller than the (weighted) average of the ensemble errors, 
E < E. In particular for uniform weights: 

E ~ ~ 'fEcx (11) 

which has been noted by several authors , see e.g. [3] . 

3 THE CROSS-VALIDATION ENSEMBLE 

From (10) it is obvious that increasing the ambiguity (while not increasing individual 
generalization errors) will improve the overall generalization. We want the networks 
to disagree! How can we increase the ambiguity of the ensemble? One way is to 
use different types of approximators like a mixture of neural networks of different 
topologies or a mixture of completely different types of approximators. Another 
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Figure 1: An ensemble of five networks were trained to approximate the square 
wave target function f(x). The final ensemble output (solid smooth curve) and 
the outputs of the individual networks (dotted curves) are shown. Also the square 
root of the ambiguity is shown (dash-dot line) _ For training 200 random examples 
were used, but each network had a cross-validation set of size 40, so they were each 
trained on 160 examples. 

obvious way is to train the networks on different training sets. Furthermore, to be 
able to estimate the first term in (10) it would be desirable to have some kind of 
cross-validation. This suggests the following strategy. 

Chose a number K :::; p. For each network in the ensemble hold out K examples for 
testing, where the N test sets should have minimal overlap, i. e., the N training sets 
should be as different as possible. If, for instance, K :::; piN it is possible to choose 
the K test sets with no overlap. This enables us to estimate the generalization error 
E(X of the individual members of the ensemble, and at the same time make sure 
that the ambiguity increases . When holding out examples the generalization errors 
for the individual members of the ensemble, E(X, will increase, but the conjecture 
is that for a good choice of the size of the ensemble (N) and the test set size 
(K), the ambiguity will increase more and thus one will get a decrease in overall 
generalization error. 

This conjecture has been tested experimentally on a simple square wave function 
of one variable shown in Figure 1. Five identical feed-forward networks with one 
hidden layer of 20 units were trained independently by back-propagation using 200 
random examples. For each network a cross-validation set of K examples was held 
out for testing as described above. The "true" generalization and the ambiguity were 
estimated from a set of 1000 random inputs. The weights were uniform, w(X = 1/5 
(non-uniform weights are addressed later). 

In Figure 2 average results over 12 independent runs are shown for some values of 
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Figure 2: The solid line shows the gen­
eralization error for uniform weights as 
a function of K, where K is the size 
of the cross-validation sets. The dotted 
line is the error estimated from equa­
tion (10) . The dashed line is for the 
optimal weights estimated by the use of 
the generalization errors for the individ­
ual networks estimated from the cross­
validation sets as described in the text. 
The bottom solid line is the generaliza­
tion error one would obtain if the indi­
vidual generalization errors were known 
exactly (the best possible weights). 
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K (top solid line) . First, one should note that the generalization error is the same 
for a cross-validation set of size 40 as for size 0, although not lower, so it supports 
the conjecture in a weaker form. However, we have done many experiments, and 
depending on the experimental setup the curve can take on almost any form, some­
times the error is larger at zero than at 40 or vice versa. In the experiments shown, 
only ensembles with at least four converging networks out of five were used . If all 
the ensembles were kept, the error would have been significantly higher at ]{ = a 
than for K > a because in about half of the runs none of the networks in the en­
semble converged - something that seldom happened when a cross-validation set 
was used. Thus it is still unclear under which circumstances one can expect a drop 
in generalization error when using cross-validation in this fashion. 

The dotted line in Figure 2 is the error estimated from equation (10) using the 
cross-validation sets for each of the networks to estimate Ea, and one notices a 
good agreement. 

4 OPTIMAL WEIGHTS 

The weights Wa can be estimated as described in e.g. [3]. We suggest instead 
to use unlabeled data and estimate them in such a way that they minimize the 
generalization error given in (10) . 

There is no analytical solution for the weights , but something can be said about 
the minimum point of the generalization error. Calculating the derivative of E as 
given in (10) subject to the constraints on the weights and setting it equal to zero 
shows that 

E a - A a = E or Wa = O. (12) 

(The calculation is not shown because of space limitations, but it is easy to do.) 
That is, Ea - Aa has to be the same for all the networks. Notice that Aa depends 
on the weights through the ensemble average of the outputs. It shows that the 
optimal weights have to be chosen such that each network contributes exactly waE 
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to the generalization error. Note, however, that a member of the ensemble can have 
such a poor generalization or be so correlated with the rest of the ensemble that it 
is optimal to set its weight to zero. 

The weights can be "learned" from unlabeled examples, e.g. by gradient descent 
minimization of the estimate of the generalization error (10). A more efficient 
approach to finding the optimal weights is to turn it into a quadratic optimization 
problem. That problem is non-trivial only because of the constraints on the weights 
(L:a Wa = 1 and Wa 2:: 0). Define the correlation matrix, 

C af3 = f dxp(x)Va(x)V f3 (x) . (13) 

Then, using that the weights sum to one, equation (10) can be rewritten as 

E = L wa Ea + L w aCaf3 w f3 - L waCaa . (14) 
a af3 a 

Having estimates of E a and Caf3 the optimal weights can be found by linear pro­
gramming or other optimization techniques. Just like the ambiguity, the correlation 
matrix can be estimated from unlabeled data to any accuracy needed (provided that 
the input distribution p is known). 

In Figure 2 the results from an experiment with weight optimization are shown. 
The dashed curve shows the generalization error when the weights are optimized as 
described above using the estimates of Ea from the cross-validation (on K exam­
pies). The lowest solid curve is for the idealized case, when it is assumed that the 
errors Ea are known exactly, so it shows the lowest possible error. The performance 
improvement is quite convincing when the cross-validation estimates are used. 

It is important to notice that any estimate of the generalization error of the indi­
vidual networks can be used in equation (14). If one is certain that the individual 
networks do not overfit, one might even use the training errors as estimates for 
Ea (see [3]). It is also possible to use some kind of regularization in (14), if the 
cross-validation sets are small. 

5 ACTIVE LEARNING 

In some neural network applications it is very time consuming and/or expensive 
to acquire training data, e.g., if a complicated measurement is required to find the 
value of the target function for a certain input. Therefore it is desirable to only use 
examples with maximal information about the function. Methods where the learner 
points out good examples are often called active learning. 

We propose a query-based active learning scheme that applies to ensembles of net­
works with continuous-valued output. It is essentially a generalization of query by 
committee [6, 7] that was developed for classification problems. Our basic assump­
tion is that those patterns in the input space yielding the largest error are those 
points we would benefit the most from including in the training set. 

Since the generalization error is always non-negative, we see from (6) that the 
weighted average of the individual network errors is always larger than or equal to 
the ensemble ambiguity, 

f(X) 2:: a(x), (15) 
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Figure 3: In both plots the full line shows the average generalization for active 
learning, and the dashed line for passive learning as a function of the number of 
training examples. The dots in the left plot show the results of the individual 
experiments contributing to the mean for the active learning. The dots in right plot 
show the same for passive learning. 

which tells us that the ambiguity is a lower bound for the weighted average of the 
squared error. An input pattern that yields a large ambiguity will always have a 
large average error. On the other hand, a low ambiguity does not necessarily imply 
a low error. If the individual networks are trained to a low training error on the 
same set of examples then both the error and the ambiguity are low on the training 
points. This ensures that a pattern yielding a large ambiguity cannot be in the close 
neighborhood of a training example. The ambiguity will to some extent follow the 
fluctuations in the error. Since the ambiguity is calculated from unlabeled examples 
the input-space can be scanned for these areas to any detail. These ideas are well 
illustrated in Figure 1, where the correlation between error and ambiguity is quite 
strong, although not perfect. 

The results of an experiment with the active learning scheme is shown in Figure 3. 
An ensemble of 5 networks was trained to approximate the square-wave function 
shown in Figure 1, but in this experiments the function was restricted to the interval 
from - 2 to 2. The curves show the final generalization error of the ensemble in a 
passive (dashed line) and an active learning test (solid line). For each training set 
size 2x40 independent tests were made, all starting with the same initial training 
set of a single example. Examples were generated and added one at a time. In the 
passive test examples were generated at random, and in the active one each example 
was selected as the input that gave the largest ambiguity out of 800 random ones. 
Figure 3 also shows the distribution of the individual results of the active and 
passive learning tests. Not only do we obtain significantly better generalization by 
active learning, there is also less scatter in the results. It seems to be easier for the 
ensemble to learn from the actively generated set. 
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6 CONCLUSION 

The central idea in this paper was to show that there is a lot to be gained from 
using unlabeled data when training in ensembles. Although we dealt with neural 
networks, all the theory holds for any other type of method used as the individual 
members of the ensemble. 

It was shown that apart from getting the individual members of the ensemble to 
generalize well, it is important for generalization that the individuals disagrees as 
much as possible, and we discussed one method to make even identical networks 
disagree. This was done by training the individuals on different training sets by 
holding out some examples for each individual during training. This had the added 
advantage that these examples could be used for testing, and thereby one could 
obtain good estimates of the generalization error. 

It was discussed how to find the optimal weights for the individuals of the ensemble. 
For our simple test problem the weights found improved the performance of the 
ensemble significantly. 

Finally a method for active learning was described, which was based on the method 
of query by committee developed for classification problems. The idea is that if the 
ensemble disagrees strongly on an input, it would be good to find the label for that 
input and include it in the training set for the ensemble. It was shown how active 
learning improves the learning curve a lot for a simple test problem. 
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