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Abstract

We describe a framework for learning saccadic eye movements using a
photometric representation of target points in natural scenes. The rep-
resentation takes the form of a high-dimensional vector comprised of the
responses of spatial filters at different orientations and scales. We first
demonstrate the use of this response vector in the task of locating pre-
viously foveated points in a scene and subsequently use this property in
a multisaccade strategy to derive an adaptive motor map for delivering
accurate saccades.

1 Introduction

There has been recent interest in the use of space-variant sensors in active vision systems
for tasks such as visual search and object tracking [14]. Such sensors realize the simultane-
ous need for wide field-of-view and good visual acuity. One popular class of space-variant
sensors is formed by log-polar sensors which have a small area near the optical axis of
greatly increased resolution (the fovea) coupled with a peripheral region that witnesses
a gradual logarithmic falloff in resolution as one moves radially outward. These sensors
are inspired by similar structures found in the primate retina where one finds both a
peripheral region of gradually decreasing acuity and a circularly symmetric area centralis
characterized by a greater density of receptors and a disproportionate representation in
the optic nerve [3]. The peripheral region, though of low visual acuity, is more sensitive
to light intensity and movement.

The existence of a region optimized for discrimination and recognition surrounded by a
region geared towards detection thus allows the image of an object of interest detected
in the outer region to be placed on the more analytic center for closer scrutiny. Such a
strategy however necessitates the existence of (a) methods to determine which location
in the periphery to foveate next, and (b) fast gaze-shifting mechanisms to achieve this



894 Rajesh P. N. Rao, Dana H. Ballard

foveation. In the case of humans, the “where-to-look-next” issue is addressed by both
bottom-up strategies such as motion or salience clues from the periphery as well as top-
down strategies such as search for a particular form or color. Gaze-shifting is accomplished
via very rapid eye movements called saccades. Due to their high velocities, guidance
through visual feedback is not possible and hence, saccadic movement is preprogrammed
or ballistic: a pattern of muscle activation is calculated in advance that will direct the
fovea almost exactly to the desired position [3].

In this paper, we describe an iconic representation of scene points that facilitates top-
down foveal targeting. The representation takes the form of a high-dimensional vector
comprised of the responses of different order Gaussian derivative filters, which are known
to form the principal components of natural images [5], at variety of orientations and
scales. Such a representation has been recently shown to be useful for visual tasks ranging
from texture segmentation [7] to object indexing using a sparse distributed memory [11].
We describe how this photometric representation of scene points can be used in locating
previously foveated points when a log-polar sensor is being used. This property is then
used in a simple learning strategy that makes use of multiple corrective saccades to
adaptively form a retinotopic motor map similar in spirit to the one known to exist in
the deep layers of the primate superior colliculus [13]. Our approach differs from previous
strategies for learning motor maps (for instance, [12]) in that we use the visual modality
to actively supply the necessary reinforcement signal required during the motor learning
step (Section 3.2).

2 The Multiscale Spatial Filter Representation

In the active vision framework, vision is seen as subserving a larger context of the encom-
passing behaviors that the agent is engaged in. For these behaviors, it is often possible
to use temporary, iconic descriptions of the scene which are only relatively insensitive
to variations in the view. Iconic scene descriptions can be obtained, for instance, by
employing a bank of linear spatial filters at a variety of orientations and scales. In our
approach, we use derivative of Gaussian filters since these are known to form the domi-
nant eigenvectors of natural images [5] and can thus be expected to yield reliable results
when used as basis functions for indexing’.

The exact number of Gaussian derivative basis functions used is motivated by the need
to make the representations invariant to rotations in the image plane (see [11] for more
details). This invariance can be achieved by exploiting the property of steerability [4]
which allows filter responses at arbitrary orientations to be synthesized from a finite set
of basis filters. In particular, our implementation uses a minimal basis set of two first-
order directional derivatives at 0° and 90°, three second-order derivatives at 0°, 60° and
120°, and four third-order derivatives oriented at 0°, 45°, 90°, and 135°.

The response of an image patch I centered at (zo,yo0) to a particular basis filter G?" can
be obtained by convolving the image patch with the filter :

ri.5(z0,90) = (G * I)(z0,%0) = [ f G (2o — 2,90 ~ W)z, p)dzdy (1)

'In addition, these filters are endorsed by recent physiological studies [15] which show that
derivative-of-Gaussians provide the best fit to primate cortical receptive field profiles among the
different functions suggested in the literature.
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The iconic representation for the local image patch centered at (zo,yo) is formed by
combining into a single high-dimensional vector the responses from the nine basis filters,
each (in our current implementation) at five different scales:

(@0, %0) =(rijs), 1=1,2,3;5=1,...,i+ 1,5 = Smin,-- -, Smaz (2)

where i denotes the order of the filter, j denotes the number of filters per order, and s
denotes the number of different scales.

The use of multiple scales increases the perspicuity of the representation and allows inter-
polation strategies for scale invariance (see [9] for more details). The entire representation
can be computed using only nine convolutions done at frame-rate within a pipeline image
processor with nine constant size 8 x 8 kernels on a five-level octave-separated low-pass-
filtered pyramid of the input image.

The 45-dimensional vector representation described above shares some of the favorable
matching properties that accrue to high-dimensional vectors (cf. [6]). In particular, the
distribution of distances between points in the 45-dimensional space of these vectors
approximates a normal distribution; most of the points in the space lie at approximately
the mean distance and are thus relatively uncorrelated to a given point [11]. As a result,
the multiscale filter bank tends to generate almost unique location-indexed signatures of
image regions which can tolerate considerable noise before they are confused with other
image regions.

2.1 Localization

Denote the response vector from an image point as 7; and that from a previously foveated
model point as 7,,. Then one metric for describing the similarity between the two points
is simply the square of the Euclidean distance (or the sum-of-squared-differences) between
their response vectors dim = ||7; — 7m||?>. The algorithm for locating model points in a
new scene can then be described as follows:

1. For the response vector representing a model point m, create a distance image

I, defined by

Im (a:! y) = min [Imaz o~ ﬁdlm; O] (3)
where 3 is a suitably chosen constant (this makes the best match the brightest
point in I,,).

2. Find the best match point (zs,,,¥s,.) in the image using the relation
(Zbrns Yo ) = argmaz{In(z,y)} (4)
Figure 1 shows the use of the localization algorithm for targeting the optical axis of a

uniform-resolution sensor in an example scene.

2.2 Extension to Space-Variant Sensing

The localization algorithm as presented above will obviously fail for sensors exhibiting
nonuniform resolution characteristics. However, the multiscale structure of the response
vectors can be effectively exploited to obtain a modified localization algorithm. Since
decreasing radial resolution results in an effective reduction in scale (in addition to some
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Figure 1: Using response vectors to saccade to previously foveated positions. (a) Initial gaze
point. (b) New gaze point; (c) To get back to the original point, the “distance image” is
computed: the brightest spot represents the point whose response vector is closest to that of the
original gaze point; (d) Location of best match is marked and an oculomotor command at that
location can be executed to foveate that point.

other minor distortions) of previously foveated regions as they move towards the periph-
ery, the filter responses previously occuring at larger scales now occur at smaller scales.
Responses usually vary smoothly between scales; it is thus possible to establish a corre-
spondence between the two response vectors of the same point on an object imaged at
different scales by using a simple interpolate-and-compare scale matching strategy. That
is, in addition to comparing an image response vector and a model response vector di-
rectly as outlined in the previous section, scale interpolated versions of the image vector
are also compared with the original model response vector. In the simplest case, interpo-
lation amounts to shifting image response vectors by one scale and thus, responses from a
new image are compared with original model responses at second, third, ... scales, then
with model responses at third, fourth, ... scales, and so on upto some threshold scale.
This is illustrated in Figure 2 for two discrete movements of a simulated log-polar sensor.

3 The Multisaccade Learning Strategy

Since the high speed of saccades precludes visual guidance, advance knowledge of the
precise motor command to be sent to the extraocular muscles for fixation of a desired
retinal location is required. Results from neurophysiological and psychophysical studies
suggest that in humans, this knowledge is acquired via learning: infants show a gradual
increase in saccadic accuracy during their first year [1, 2] and adults can adapt to changes
(caused for example by weakening of eye-muscles) in the interrelation between visual input
and the saccades needed for centering. An adaptive mechanism for automatically learning
the transfer function from retinal image space into motor space is also desirable in the
context of active vision systems since an autonomous calibration of the saccadic system
would (a) avoid the need for manual calibration, which can sometimes be complicated,
and (b) provide resilience amidst changing circumstances caused by, for instance, changes
in the camera lens mechanisms or degradation of the motor apparatus.

3.1 Motor Maps

In primates, the superior colliculus (SC), a multilayered reuron complex located in the
upper regions of the brain stem, is known to play a crucial role in the saccade generation
[13). The upper layers of the SC contain a retinotopic sensory map with inputs from
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Figure 2: Using response vectors with a log-polar sensor. (a) through (c) represent a sequence of
images (in Cartesian coordinates) obtained by movement of a simulated log-polar sensor from an
original point (marked by ‘+’) in the foveal region (indicated by a circle) towards the right. (d)
depicts the process of interpolating (in this case, shifting) and matching response vectors of the
same point as it moves towards the periphery of the sensor (Positive responses are represented
by proportional upward bars and negative ones by proportional downward bars with the nine
smallest scale responses at the beginning and the nine largest ones at the end).

the retina while the deeper layers contain a motor map approximately aligned with the
sensory map. The motor map can be visualized as a topologically-organized network
of neurons which reacts to a local activation caused by an input signal with a vectorial
output quantity that can be transcoded into a saccadic motor command.

The alignment of the sensory and motor maps suggests the following convenient strategy
for foveation: an excitation in the sensory layer (signaling a foveal target) is transferred
to the underlying neurons in the motor layer which deliver the required saccade. In our
framework, the excitation in the sensory layer before a goal-directed saccade corresponds
to the brightest spot (most likely match) in the distance image (Figure 1 (c) for example).
The formation of sensory map can be achieved using Kohonen's well-known stochastic
learning algorithm by using a Gaussian input density function as described in [12]. Our
primary interest lies not in the formation of the sensory map but in the development
of a learning algorithm that assigns appropriate motor vectors to each location in the
corresponding retinotopically-organized motor map. In particular, our algorithm employs
a visual reinforcement signal obtained using iconic scene representations to determine the
error vector during the learning step.

3.2 Learning the Motor Map

Our multisaccade learning strategy is inspired by the following observations in [2]: During
the first few weeks after birth, infants appear to fixate randomly. At about 3 months of
age, infants are able to fixate stimuli albeit with a number of corrective saccades of
relatively large dispersion. There is however a gradual decrease in both the dispersion
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and the number of saccades required for foveation in subsequent months (Figure 3 (a)
depicts a sample set of fixations). After the first year, saccades are generally accurate,
requiring at most one corrective saccade®.

The learning method begins by assigning random values to the motor vectors at each
location. The response vector for the current fixation point is first stored and a random
saccade is executed to a different point. The goal then is to refixate the original point
with the help of the localization algorithm and a limited number of multiple corrective
saccades. The algorithm keeps track of the motor vector with minimum error during
each run and updates the motor vectors for the neighborhood around the original unit
whenever an improvement is observed. The current run ends when either the original
point was successfully foveated or the limit M AX for the maximum number of allowable
corrective saccades was exceeded. A more detailed outline of the algorithm is as follows:

1. Initialize the motor map by assigning random values (within an appropriate
range) to the saccadic motor vectors at each location. Align the optical axis
of the sensor so that a suitable salient point falls on the fovea. Initialize the run
number to ¢ := 0.

2. Store in memory the filter response vector of the point p currently in the center
of the foveal region. Let ¢ :=¢ + 1.

3. Execute a random saccade to move the fovea to a different location in the scene.

4, Use the localization algorithm described in Section 2.2 and the stored response
vector to find the location [ of the previously foveated point in the current retinal
image. Execute a saccade using the motor vector §; stored in this location in the
motor map.

5. If the currently foveated region contains the original point p, return to 2 (§; is
accurate); otherwise,

(a) Initialize the number of corrective saccades N := 0 and let §:= 5.

(b) Determine the new location !’ of p in the new image as in (4) and let €, be
the error vector, i.e. the vector from the foveal center to I’, computed from
the output of the localization algorithm.

(c) Execute a saccade using the motor vector 5 stored at I’ and let & be the error
vector (computed from the output of the localization algorithm) from the
foveal center to the new location ! of point p found as in 4. Let N := N +1
and let §:= 5§+ 3 .

(d) If ||e]] < ||€minll, then let émin := € and update the motor vectors for the
units k£ given by the neighborhood function N (I,t) according to the well-
known Kohonen rule:

8k = 8k + v(t)(5 — 8%) (5)
where y(t) is an appropriate gain function (0 < (¢) < 1).

(e) If the currently foveated region contains the original point p, return to 2;

otherwise, if N < M AX, then determine the new location I’ of p in the new

image as in (4) and go to 5(c) (i.e. execute the next saccade); otherwise,
return to 2.

?Large saccades in adults are usually hypometric i.e. they undershoot, necessitating a slightly
slower corrective saccade. There is currently no universally accepted explanation for the need
for such a two-step strategy.
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Figure 3: (a) Successive saccades executed by a 3-month old (left) and a 5-month old (right)
infant when presented with a single illuminated stimulus (Adapted from [2]). (b) Graph showing
% of saccades that end directly in the fovea plotted against the number of iterations of the
learning algorithm for different values of MAX. (c) An enlarged portion of the same graph
showing points when convergence was achieved.

The algorithm continues typically until convergence or the completion of a maximum
number of runs. The gain term «(¢) and the neighborhood N(!,t) for any location [ are
gradually decreased with increasing number of iterations t.

4 Results and Discussion

The simulation results for learning a motor map comprising of 961 units are shown in
Figures 3 (b) and (c) which depict the variation in saccadic accuracy with the number of
iterations of the algorithm for values of M AX (maximum number of corrective saccades)
of 1, 5 and 10. From the graphs, it can be seen that starting with an initially random
assignment of vectors, the algorithm eventually assigns accurate saccadic vectors to all
units. Fewer iterations seem to be required if more corrective saccades are allowed but
then each iteration itself takes more time.

The localization algorithm described in Section 2.1 has been implemented on a Datacube
MazVideo 200 pipeline image processing system and takes 1-2 seconds for location of
points. Current work includes the integration of the multisaccade learning algorithm de-
scribed above with the Datacube implementation and further evaluation of the learning
algorithm. One possible drawback of the proposed algorithm is that for large retinal
spaces, learning saccadic motor vectors for every retinal location can be time-consuming
and in some cases, even infeasible [1]. In order to address this problem, we have recently
proposed a variation of the current learning algorithm which uses a sparse motor map
in conjunction with distributed coding of the saccadic motor vectors. This organization
bears some striking similarities to Kanerva’s sparse distributed memory model [6] and is
in concurrence with recent neurophysiological evidence [8] supporting a distributed popu-
lation encoding of saccadic movements in the superior colliculus. We refer the interested
reader to [10] for more details.
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