
Transformation Invariant Autoassociation
with Application to

Handwritten Character Recognition

Holger Schwenk Maurice Milgram

PARC
Universite Pierre et Marie Curie

tour 66-56, boite 164
4, place Jussieu, 75252 Paris cedex 05, France.

e-mail: schwenk@robo.jussieu.fr

Abstract

When training neural networks by the classical backpropagation algo­
rithm the whole problem to learn must be expressed by a set of inputs and
desired outputs. However, we often have high-level knowledge about
the learning problem. In optical character recognition (OCR), for in­
stance, we know that the classification should be invariant under a set of
transformations like rotation or translation. We propose a new modular
classification system based on several autoassociative multilayer percep­
trons which allows the efficient incorporation of such knowledge. Results
are reported on the NIST database of upper case handwritten letters and
compared to other approaches to the invariance problem.

1 INCORPORATION OF EXPLICIT KNOWLEDGE

The aim of supervised learning is to learn a mapping between the input and the output
space from a set of example pairs (input, desired output). The classical implementation
in the domain of neural networks is the backpropagation algorithm. If this learning set is
sufficiently representative of the underlying data distributions, one hopes that after learning,
the system is able to generalize correctly to other inputs of the same distribution.

992 Holger Schwenk, Maurice Milgram

It would be better to have more powerful techniques to incorporate knowledge into the
learning process than the choice of a set of examples. The use of additional knowledge
is often limited to the feature extraction module. Besides simple operations like (size)
normalization, we can find more sophisticated approaches like zernike moments in the
domain of optical character recognition (OCR). In this paper we will not investigate this
possibility, all discussed classifiers work directly on almost non preprocessed data (pixels).

In the context of OCR interest focuses on invariance of the classifier under a number of
given transformations (translation, rotation, ...) of the data to classify. In general a neural
network could extract those properties of a large enough learning set, but it is very hard to
learn and will probably take a lot of time. In the last years two main approaches for this
invariance problem have been proposed: tangent-prop and tangent-distance. An indirect
incorporation can be achieved by boosting (Drucker, Schapire and Simard, 1993).

In this paper we briefly discuss these approaches and will present a new classification system
which allows the efficient incorporation of transformation invariances.

1.1 TANGENT PROPAGATION

The principle of tangent-prop is to specify besides desired outputs also desired changes jJJ.
of the output vector when transforming the net input x by the transformations tJJ. (Simard,
Victorri, LeCun and Denker, 1992).

For this, let us define a transformation of pattern p as t(p, a) : P --t P where P is the space
of all patterns and a a parameter. Such transformations are in general highly nonlinear
operations in the pixel space P and their analytical expressions are seldom known. It is
therefore favorable to use a first order approximation:

tp _- at(p, a) I t(p, a) :::::: p + atp with aa a=O

tp is called the tangent vector. This definition can be generalized to c transformations:

(1)

t(p, Q) :::::: p + a] tp] + ... + a c tpc = P + TpQ (2)
where Tp is a n x c matrix, each column corresponding to a tangent vector.

Let us define R (x) the function calculated by the network. The desired behavior of the net
outputs can be obtained by adding a regularization term Er to the objective function:

E, = ~ k -aR(t;~.a)tJ '" ~ k -a~~x) t~ II' (3)

ti is the tangent vector for transformation tJJ. of the input vector x and a R (x) / ax is the
gradient of the network with respect to the inputs. Transformation invariance of the outputs
is obtained by setting jJJ. = 0, so we want that aR (x) / ax is orthogonal to ti .
Tangent-prop improved the learning time and the generalization on small databases, but its
applicability to highly constraint networks (many shared weights) trained on large databases
remains unknown.

1.2 TANGENT DISTANCE

Another class of classifiers are memory based learning methods which rely on distance
metrics. The incorporation of knowledge in such classifiers can be done by a distance

Transformation Invariant Autoassociation 993

measure which is (locally) invariant under a set of specified transformations.

(Simard, LeCun and Denker, 1993) define tangent distance as the minimal distance between
the two hyperplanes spanned up by the tangent vectors Tp in point P and Tq in point q:

Dpq(p, q) = ~i!J (p + Tpii - q - TqiJ) 2 = (p + Tpii* _ q _ TqiJ*) 2 (4)
01,/3

The optimality condition is that the partial derivatives 8Dpq /8ii* and 8Dpq /8iJ* should

be zero. The values ii* and iJ* minimizing (4) can be computed by solving these two linear
systems numerically.

(Simard, LeCun and Denker, 1993) obtained very good results on handwritten digits and
letters using tangent distance with a I-nearest-neighborclassifier (I-nn) . A big problem of
every nn-classifier, however, is that it uses no compilation of the data and it needs therefore
numerous reference vectors resulting in long classification time and high memory usage.

Like reported in (Simard, 1994) and (Sperdutti and Stork, 1995) important improvements
are possible, but often a trade-off between speed and memory usage must be made.

2 ARCHITECTURE OF THE CLASSIFIER

The main idea of our approach is to use an autoassociative multilayer perceptron with a
low dimensional hidden layer for each class to recognize. These networks, called diabolo
network in the following, are trained only with examples of the corresponding class. This
can be seen as supervised learning without counter-examples. Each network learns a hidden
layer representation which preserves optimally the information of the examples of one class.
These learned networks can now be used like discriminant functions: the reconstruction
error is in general much lower for examples of the learned class than for the other ones.

In order to build a classifier we use a decision module which interprets the distances between
the reconstructed output vectors and the presented example. In our studies we have used
until now a simple minimum operator which associates the class of the net with the smallest
distance (Fig. 1).

The figure illustrates also typical classification behavior, here when presenting a "D" out of
the test set. One can see clearly that the distance of the network "D" is much lower than for
the two other ones. The character is therefore correctly classified. It is also interesting to
analyze the outputs of the two networks with the next nearest distances: the network "0"
tries to output a more round character and the network "B" wants to add a horizontal bar in
the middle.

The basic classification architecture can be adapted in two ways to the problem to be solved.
One on hand we can imagine different architectures for each diabolo network, e.g. several
encoding/decoding layers which allow nonlinear dimension reduction. It is even possible
to use shared weights realizing local feature detectors (see (Schwenk and Milgram, 1994)
for more details).

One the other hand we can change the underlying distance measure, as long as the derivatives
with respect to the weights can be calculated. This offers a powerful and efficient mechanism
to introduce explicit knowledge into the learning algorithm of a neural network. In the
discussed case, the recognition of characters represented as pixel images, we can use a

994

character
to classify

Holger Schwenk, Maurice Milgram

score B

8.07

A scoreD
I--t-~ U. --~

input diabolo output
vector networks vectors

4.49

score 0

8.54

distance
measures

Figure 1: Basic Architecture of a Diabolo Classifier

decision
module

transformation invariant distance measure between the net output 0 and the desired output
d (that is of course identical with the net input). The networks do not need to learn each
example separately any more, but they can use the set of specified transformations in order
to find a common non linear model of each class.

The advantage of this approach, besides a better expected generalization behavior of course,
is a very low additional complexity. In comparison to the original k-nn approach, and
supposedly any possible optimization, we need to calculate only one distance measure for
each class to recognize, regardless of the number of learning data.

We used two different versions of tangent distance with increasing complexity:

1. single sided tangent distance:

Dd(d,o) =mjn~ (d+Tda - o f = ~ (d+Tda * -of (5)

This is the minimal distance between the hyperplane spanned up by the tangent
vectors Td in input vector d and the untransformed output vector o.

2. double sided tangent distance:

Ddo(d,o) = mi!?! (d + Tda - 0 * g - ToiJ) 2 (6)
Ci,/3 2

The convolution of the net output with a Gaussian 9 is necessary for the computa­
tion of the tangent vectors To (the net input d is convolved during preprocessing).

Figure 2 shows a graphical comparison of Euclidean distance with the two tangent distances.

Transformation Invariant Autoassociation 995

d : desired output
td : tangent vector in d

o : net output
to : tangent vector in 0

D : Euclidean distance
D d : single sided tangent distance

(only d is transformed)
Ddo : double sided tangent distance

(both points are transformed)

V' D d : gradient of D d

Figure 2: Comparison of Euclidean Distance with the Different Tangent Distances

The major advantage of the single sided version is that we can now calculate easily the
optimal multipliers &* and therefore the whole distance (the double sided version demands
expensive matrix multiplications and the numerical solution of a system of linear equations).

The optimality condition 8Dd(d, 0)/8&* ~ OT gives:

(7)

The tangent vectors Td and the matrix Ti} = (TITd)-1 can be precomputed and stored in
memory. Note that it is the same for all diabolo networks, regardless of their class.

2.1 LEARNING ALGORITHM

When using a tangent distance with an autoencoder we must calculate its derivatives with
respect to the weights, i.e. after application of the chain rule with respect to the output
vector o. In the case of the single sided tangent distance we get:

(8)

The resulting learning algorithm is therefore barely more complicated than with standard
Euclidean error. Furthermore it has a pleasant graphical interpretation: the net output
doesn't approach directly the desired output any more, but it takes the shortest way towards
the tangent hyperplane (see also fig. 2).

The derivation of the double sided tangent distance with respect to the net output is more
complicated. In particular we must derivate the convolution of the net output with a
Gaussian as well as the tangent vectors To. These equations will be published elsewhere.

Training of the whole system is stopped when the error on the cross validation set reaches a
minimum. Using stochastic gradient descent convergence is typically achieved after some
ten iterations.

996 Holger Schwenk, Maurice Milgram

3 APPLICATION TO CHARACTER RECOGNITION

In 1992 the National Institute of Standards and Technology provided a Database of hand­
written digits and letters, known under the name NIST Special-Database 3. This database
contains about 45000 upper case segmented characters which we have divided into learning
and cross-validation set (60%) and test set (40%) respectively.

We only applied a very simple preprocessing: the binary characters were centered and size­
normalized (the aspect-ratio was kept). The net input is 16 x 16 pixels with real-values.

3.1 EXPERIMENTAL RESULTS

All the following results were obtained by fully connected diabolo networks with one low
dimensional hidden layer, and a set of eight transformations (x- and y-translation, rotation,
scaling, axis-deformation, diagonal-deformation, x- and y-thickness). Figure 3 illustrates
how the networks use the transformations.

,
input

Euclidean distance: 11 .1

optimally ttansformed
input output

'" tangent distance: 0.61

,
output

,
input

Euclidean distance: 20.0

optimally ttansformed
input output

.,
tangent distance: 0.94

,
output

Figure 3: Reconstruction Examples (test set). The left side of each screen dump depicts
the input character and the right side the one reconstructed by the network. In the middle,
finally, one can see the optimally transformed patterns as calculated when evaluating the

double sided tangent distance, i.e. transformed by a* and jJ* respectively.

Although the "I.:' in the first example has an unusual short horizontal line, the network
reconstructs a normally sized character. It is clearly visible how the input transformation
lengthens and the output transformation shortens this line in order to get a small tangent
distance. The right side shows a very difficult classification problem: a heavily deformed
"T". Nevertheless we get a small tangent distance, so that the character is correctly classified.
In summary we note a big difference between the Euclidean and the tangent distances, this
is a good indicator that the networks really use the transformations.

The performances on the whole test set of about 18 000 characters are summarized in
figure 4. For comparison we give also the results of a one nearest neighbor classifier on
the same test set. The incorporation of knowledge improved in both cases dramatically
the performances. The diabolo classifier, for instance, achieves an error rate of 4.7 % with
simple Euclidean distance which goes down to 3.7 % with the single sided and to only
2.6 % with the double sided tangent distance. In order to get the same results with the
I-nn approach, the whole set of 27000 reference vectors had to be used. It's worth to note
the results with less references: when using only 18 000 reference vectors the error rates
increased to 3.7% for the single sided and to 2.8% for the double sided version respectively.

Transformation Invariant Autoassociation

%

5-

-

5.3

F 2.5

I-nn
(27 000 refs)

4.7
r;;

11 3.7

Diabolo

4.0

LeNet

c Euclidean

- one sided

- two sided

Figure 4: Raw Error Rate with NIST Upper Case Letters (test set)

997

In practical applications we are not only interested in low error rates, but we need also low
computationally costs. An important factor is the recognition speed. The overall processing
time of a diabolo classifier using the full tangent distance corresponds to the calculation of
about 7 000 Euclidean and to less than 50 tangent distances. This should be less than for
any algorithm of the k-nn family. If we assume the precalculation of all the tangent vectors
and other expensive matrix multiplications, we could evaluate about 80 tangent distances,
but the price would be exploding memory requirements. A diabolo classifier, on the other
hand, needs only few memory: the storage of the weights corresponds to about 60 reference
vectors per class. On a HP 715/50 workstation we obtained a recognition rate of 7.5 chis
with the single sided and of more than 2.5 chis with the double sided tangent distance. We
have also a method to combine both by rejection, resulting in up to 4 chis at the same low
error rates (corresponds to the calculation of 32 double sided tangent distances).

The table contains also the results of a large multilayer perceptron with extensive use of
shared weights, known as LeNet. (Drucker, Schapire and Simard, 1993) give an error rate
of 4.0% when used alone and of 2.4% for an ensemble of three such networks trained
by boosting. The networks were trained on a basic set of 10 000 examples, the cross
validation and test set consisted of 2 000 and 3 000 examples respectively (Drucker,
personal communication). Due to the different number of examples, the results are perhaps
not exactly comparable, but we can deduce nevertheless that the state of the art on this
database seems to be around 2.5 %.

4 DISCUSSION

We have proposed a new classification architecture that allows the efficient incorporation of
knowledge into the learning algorithm. The system is easy to train and only one structural
parameter must be chosen by the supervisor: the size of the hidden layer. It achieved state
of the art recognition rates on the NIST database of handwritten upper case letters at a very
low computational complexity.

Furthermore we can say that a hardware implementation seems to be promising. Fully
connected networks with only two layers are easy to put into standardized hardware chips.
We could even propagate all diabolo networks in parallel. Speedups of several orders of
magnitude should therefore be possible.

998 Holger Schwenk, Maurice Milgram

On this year NIPS conference several authors presented related approaches. A comparable
classification architecture was proposed by (Hinton, Revow and Dayan, 1995). Instead of
one non-linear global model per class, several local linear models were used by performing
separately principal component analysis (PCA) on subsets of each class. Since diabolo
networks with one hidden layer and linear activation functions perform PCA, this architec­
ture can be interpreted as an hierarchical diabolo classifier with linear nets and Euclidean
distance. Such an hierarchisation could also be done with our classifier, i.e. with tangent
distance and sigmoidal units, and might improve the results even further.

(Hastie, Simard and Sackinger, 1995) developed an iterative algorithm that learns optimal
reference vectors in the sense of tangent distance. An extension allows also to learn typical
invariant transformations, i.e. tangent vectors, of each class. These two algorithms allowed
to reduce drastically the number of reference vectors, but the results of the original approach
couldn't be achieved no longer.

Acknowledgements

The first author is supported by the German Academic Exchange Service under grant
HSP II 516.006.512.3. The simulations were performed with the Aspirin/ MIGRAINES
neural network simulator developed by the MITRE Corporation.

References

H. Drucker, R. Schapire, and P. Simard (1993), "Boosting performance in neural networks,"
Int. Journal of Pattern Recognition and Artificial Intelligence, vol. 7, no. 4, pp. 705-719.

T. Hastie, P. Simard and E. Sackinger (1995), "Learning prototype models for tangent
distance," in NIPS 7 (G. Tesauro, D. Touretzky, and T. Leen, eds.), Morgan Kaufmann.

G. Hinton, M. Revow, and P. Dayan (1995), "Recognizing handwritten digits using mixtures
of linear models," in NIPS 7 (G. Tesauro, D. Touretzky, and T. Leen, eds.), Morgan
Kaufmann.

H. Schwenk and M. Milgram (1994), "Structured diabolo-networks for handwritten char­
acter recognition," in International Conference on Artificial Neural Networks, pp. 985-988,
Springer-Verlag.

P. Simard, B. Victorri, Y. LeCun, and 1. Denker (1992), "Tangent prop - a formalism for
specifying selected invariances in an adaptive network," in NIPS 4 (1. Moody, S. Hanson,
and R. Lippmann, eds.), pp. 895-903, Morgan Kaufmann.

P. Simard, Y. LeCun, and J. Denker (1993), "Efficient pattern recognition using a new
transformation distance," in NIPS 5 (S. Hanson, J. Cowan, and C. Giles, eds.), pp. 50-58,
Morgan Kaufmann.

P. Simard (1994), "Efficient Computation of complex distance measures using hierarchical
filtering," in NIPS 6 (J.D. Cowan, G. Tesauro, and J. Alspector, eds.), pp. 50-58, Morgan
Kaufmann.

A. Sperdutti and D.G. Stork (1995), ''A rapid graph-based method for arbitrary transfor­
mation invariant pattern classification," in NIPS 7 (G. Tesauro, D. Touretzky, and T. Leen,
eds.), Morgan Kaufmann.

