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Abstract

For machines to perform classification tasks, such as speech and
character recognition, appropriately handling deformed patterns
is a key to achieving high performance. The authors presents a
new type of classification system, an Adaptive Input Field Neu-
ral Network (AIFNN), which includes a simple pre-trained neural
network and an elastic input field attached to an input layer. By
using an iterative method, AIFNN can determine an optimal affine
translation for an elastic input field to compensate for the original
deformations. The convergence of the AIFNN algorithm is shown.
AIFNN is applied for handwritten numerals recognition. Conse-
quently, 10.83% of originally misclassified patterns are correctly
categorized and total performance is improved, without modifying
the neural network.

1 Introduction

For machines to accomplish classification tasks, such as speech and character recog-
nition, appropriately handling deformed patterns is a key to achieving high perfor-
mance [Simard 92] [Simard 93] [Hinton 92] [Barnard 91]. The number of reasonable
deformations of patterns is enormous, since they can be either linear translations
(an affine translation or a time shifting) or non-linear deformations (a set of com-
binations of partial translations), or both.

Although a simple neural network (e.g. a 3-layered neural network) is able to adapt
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Figure 2: Delta Force

non-linear deformations and to discriminate noises, it is still necessary to have
additional methods or data to appropriately process deformations.

This paper presents a new type of classification system, an Adaptive Input Field
Neural Network (AIFNN), which includes a simple pre-trained neural network and
an elastic input field attached to an input layer. The neural network is applied to
non-linear deformation compensations and the elastic input field to linear deforma-
tions.

The AIFNN algorithm can determine an optimal affine translation for compensating
for the original patterns’ deformations, which are misclassified by the pre-trained
neural network. As the result, those misclassified patterns are correctly classified
and the final classification performance is improved, compared to that for the orig-
inal neural network, without modifying the neural network.

2 Adaptive Input Field Neural Network (AIFNN)

AIFNN includes a pre-trained neural network and an elastic input field attached to
an input layer (Fig. 1). The elastic input field contains receptors sampling input
patterns at each location. Each receptor connects to a cell in the input layer. Each
receptor links to its adjacent receptors with an elastic constraint and can move over



Adaptive Elastic Input Field for Recognition Improvement 1103

the input pattern independently, as long as its relative elastic constraint is satisfied.
The affine translation of the whole receptor (e.g. a shift, rotation, scale and slant
translation) satisfies an elastic constraint, since a constraint violation is induced by
the receptors’ relative locations. ! Partial deformations are also allowed with a
little constraint violation.

This feature of the elastic constraint is similar to that of the Elastic Net method
[Durbin 87], which can solve NP-hard problems. Although this elastic net method
is directly applicable to the template matching method, the performance is highly
dependent on the template selection. Therefore, an elaborated feature space for
non-linear deformations is mandatory [Hinton 92]. AIFNN utilizes something like
an elastic net constraint, but does not require any prominent templates.

The AIFNN algorithm is a repeated sequence of a bottom-up process (calculating
a guess and comparing with the presumption) and a top-down process (modifying
receptor’s location to decrease the error and to satisfy the input field constraints).
For applying AIFNN as a classifier, a parallel search is performed; all categories
are chosen as presumption categories and the AIFNN algorithm is executed. After
hundreds of repetitions, an L score is calculated, which is the sum of the error and
the constraint violation in the elastic input field. A category which produces the
lowest L score is chosen as a plausible category. In Section 3, it is proved that all
receptors will settle to an equilibrium state. In the following sections, details about
the bottom-up and top-down processes are described.

Bottom-Up Process:

When a novel pattern is presented, each receptor samples activation corresponding
to a pattern intensity at each location. Each receptor activation is directly transmit-
ted to a corresponding neural network input cell. Those input values are forwarded
through a pre-trained neural network and an output guess is obtained.

This guess is compared to the presumption category, and the negative of this error
is defined as the presumption certainty. 2 For example, using the mean squared
error criterion, the error EP is defined as follows;

1
EP =3 ) (d— o), (1
k
where oy is the output value, and dj is the desired value determined by the pre-
sumption category. The presumption certainty is defined as —EP.

Top-Down Process:

To minimize the error and to maximize the presumption certainty, each receptor
modifies the activation by moving its location over the input pattern. The new
location for each receptor is determined by two elements; a direction which yields
less error and a direction which satisfies the input field elastic constraint. The
former element is called a Delta Force, since it relates to a delta value of an input
layer cell. The latter element is named an Address Force. Each receptor moves to

'In previous papers, [Asogawa 90] and [Asogawa 91], a shift and rotation translation
was taken into account. In those models, a scale and slant translation violated the elastic
constraint.

2 Although another category coding schema is also possible, for simplicity, it is presumed
that each output cell corresponds to one certain category.
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a new location, which is determined by a sum of those two forces. The sum force is
called the Combined Force. In the next two sections, details about these forces are
described.

Delta Force: The Delta Force, which reduces EP by altering receptors’ locations,
is determined by two elements: a partial derivative for the input value to the error,
and a local pattern gradient at each receptor location (Fig. 1).

To decrease the error EP | the value divergence for the j-th cell is computed as,

OEP

e D S |

Anet; = —a Bty a6 (2)
where aP is small positive number and 6; is a delta value for the j-th input cell

and computed by the back-propagation [Yamada 91]. Anet; and a local pattern
gradient V¢; are utilized to calculate a Delta Force Asf" ; a scalar value of Asf is
given as,

Anet;

; 3

Ve )

The direction of the Delta Force As? is chosen as being parallel to that of V¢;.

Consequently, As? is given as,
Anet; V¢; 8;

Asp=—-—-——'? R :aD—J V. 4
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To avoid Asf becoming infinity, when |V¢;| is almost equal to 0, a small constant
c(= é-) is added to the denominator; therefore, As_? is defined as,

-

V2 +c

|AsP| =

Asf = aP

Vé;. (5)

Address Force: If each receptor is moved iteratively following only the Delta Force,
the error becomes its minimum. However, receptors may not satisfy the input field
constraint and induce a large constraint violation E4. Here, E4 is defined by a
distance between a receptor’s lattice S and a lattice which is derived by an affine
translation from the original lattice. Therefore, E4 is defined as follows;

1 1
B* = ZdSN,8) =33 lIs) ~silP

= FT(S%51),9), (6)

where d(-,-) is a distance measure for two receptor’s lattices. S is a current re-
ceptor lattice. SNV is the receptor lattice given by the affine translation 7(-) with
parameters t and SO 5O s the original receptor lattice.

Therefore, as long as the receptor’s lattice can be driven by some affine translation,
there is no constraint violation.

The affine parameters t are estimated so as to minimize E4;

OEA :
W_O forig=1,v4,86 (7)
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Since E4 is quadratlc with respect to t;, computing ¢; is moderate. The Address
Force for the j-th receptor As is defined as the partial derivative to E4 with
respect to the receptor’s location Sj;

dEA
Ao _oh
Asj = —a 55 (8)

A

where a” is a small positive constant,

Combined Force: Here, all receptors are moved by a Combined Force As, which is
a sum of the Delta Force AsP and the Address Force As?®.

After one hundred iterations, all receptors are moved to the location which produces
the minimum output error and the minimum constraint violation. Final states are
evaluated with a new measurement L score, Wthh is the sum of the error EP and
the constraint violation E4;ie. L = EP + BA

This L score is utilized to choose the correct category in a parallel search. In a par-
allel search, each category is temporarily chosen as a presumption and converged
L scores are calculated. Those scores are compared and the category yielding the
smallest L score is chosen as the correct category. This method fully exploits the
features of AIFNN, but it requires a large amount of computation, which can fortu-
nately be processed totally in parallel. In the following section, convergence of the
AIFNN is shown.

3 Convergence

Convergence is shown by proving that the L is a Lyapunov function. When the L is
a Lyapunov function, all receptors converge to some locations after iterations. The
necessary and sufficient conditions for a Lyapunov function are (1) L has a lower
bound and (2) L monotonically decreases by applying the Combined Forces.

(13 Lower Bound:

is the squared error at the output layer. Therefore, EP? > 0. E4 is the con-
straint violation, which is defined with a distance between two lattices. Therefore,
E# > 0. Since the L is a sum of EP and E4, the existence of a lower bound for
the L is proved. O

(2) Monotonically Decrease:
The derivative of the L is calculated to show that the L decreases monotonically.
dL d EP dEA

T TR T

e

where %Si— is the Combined Force and given as,
('
dt

= AsP + AsA. (10)
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When a source image is smooth and |V¢;| is smaller than ¢, the following approxi-
mation is satisfied;

Vi,

—_— ~ V. 11
By using Eq. (11), the Delta Force is approximated as follows;
Vi b; QEP
D _ D s I, IO
As” = « VooV & (12)
By using Eqs. (8) and (12), and by letting o” = o, the L derivative is computed
as follows;
dL ax~ (OEP  QEA\?
-l <0.
t « Z( Os; + 0s; <0 (13)

With Eq. (13), it is proved that L decreases monotonically.O

4 Experiments and Results

Hand-written numerals recognition is chosen as one of the applications of AIFNN,
since performance improvement is shown by compensating for deformations
[Simard 92] [Simard 93] [Hinton 92]. The numeral inputs are bi-level images of
32x40. They are blurred with a 5x5 Gaussian kernel and resampled to 14x 18 pixel
gray level images. To calculate an intensity and a local gradient between grids,
bi-linear Lagrange interpolation is utilized.

A neural network is 3 layered. The numbers of cells for the input layer, the hid-
den layer and the output layer are 252, 20 and 10, respectively. To obtain a
simpler weight configuration, two techniques are utilized; a constant weight de-
cay [Ishikawa 89] and a small constant addition to output function derivatives
[Fahlman 88]. Training is repeated for 180 epochs with 2500 numerals, and tested
with another 2500. Since image edges are almost blank, about 2400 connections
between the input layer and the hidden layer are equal to 0; therefore, the number
of parameters is reduced to 2870.

In this experiment, a simple decision method is used; the maximum output cell is
chosen as a guess and patterns are rejected when the error of the guess is greater
than a threshold value. Naturally, a low threshold yields a low misclassification
rate, but also yields a high rejection rate [Martin 92]. With the maximum thresh-
old, the rates of rejection, correct classification and misclassification are 0.00%(0
patterns), 95.20%(2380 patterns) and 4.80%(120 patterns), respectively. For the
2500 numerals learning data, these rates are 0.00%(0 patterns), 99.40%(2485 pat-
terns) and 0.60%(15 patterns). When a threshold is 0.001, the rates of rejection,
correct classification and misclassification are 43.52%(1088 patterns), 56.40%(1410
patterns) and 0.08%(2 patterns), respectively.

AIFNN is applied to these 1088 rejected patterns. and classifies 997 patterns cor-
rectly. Therefore, total performances for rejection, correct classification and mis-
classification become 0.00%(0 patterns), 95.72%(2393 patterns) and 4.28%(107 pat-
terns), respectively. As the classification performance is improved; the number of
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misclassified patterns reduces from 120 to 107 without modifying the neural net-
work. 10.83% of the originally misclassified patterns are correctly categorized. Fig.
3 shows an input field after one hundred iterations.
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In the figure on the left, receptors are located at each grid point in a gray lattice. The
circle diameter corresponds to the pattern intensity at each receptor’s location. The bot-
tom right figure indicates the source image, and the top right figure indicates the neural
network input. This image was initially misclassified as 3 instead of 8. After iteration
with presumption as 8, category 8 gets the highest activation and the receptor’s lattice is

rotated to compensate for the initial deformation.
Figure 3: Input Field After Adaptation

5 Discussion

It is shown that the AIFNN can improve the classification performance for the
original neural network, without modifications. This performance improvement is
caused by an optimal affine translations estimation for rejected patterns.

Although an affine translation is discussed in this paper, the algorithm is applica-
ble to any deformation mechanism; such as a gain and offset equalization and 3D
perspective deformation.
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The requirement for a neural network in AIFNN is the capability of calculating
partial derivatives for an input layer, so a layered neural network is utilized in
this paper. Since partial derivative can be computed by numerical approximation,
practically any neural network is applicable for AIFNN. Moreover, any differentiable
error criterion is applicable; such as, a KL information and a likelihood.

To reduce computation, a sequential searching is also possible; a presumption is
chosen as the most plausible category, e.g. the smallest error category. If the L
score falls behind a threshold, this presumption is regarded as correct. If it’s not,
another plausible category is chosen as a presumption and tested [Asogawa 91].
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