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Abstract

We derive global H* optimal training algorithms for neural net-
works. These algorithms guarantee the smallest possible prediction
error energy over all possible disturbances of fixed energy, and are
therefore robust with respect to model uncertainties and lack of
statistical information on the exogenous signals. The ensuing es-
timators are infinite-dimensional, in the sense that updating the
weight vector estimate requires knowledge of all previous weight
esimates. A certain finite-dimensional approximation to these es-
timators is the backpropagation algorithm. This explains the lo-
cal H*® optimality of backpropagation that has been previously
demonstrated.

1 Introduction

Classical methods in estimation theory (such as maximum-likelihood, maximum
entropy and least-squares) require a priori knowledge of the statistical properties
of the exogenous signals. In some applications, however, one is faced with model
uncertainties and lack of statistical information, which has led to an increasing
interest in minimax estimation (see e.g., Zames 1981, Khargonekar and Nagpal
1991, and the references therein) with the belief that the resulting so-called H*
algorithms will be more robust and less sensitive to parameter variations.
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In (Hassibi, Sayed and Kailath, 1994) we have shown that LMS (Widrow and Hoff,
1960) and backpropagation (Rumelhart and Mclelland, 1986), the currently most
widely used adaptive algorithms that have long been considered to be approximate
H? (or least-squares) solutions, are indeed H> optimal and locally H*> optimal al-
gorithms, respectively. This, in our view, connects earlier work in learning theory to
more recent ideas in robust estimation, and explains why LMS and backpropagation
have found wide applicability in such a diverse range of problems.

The local H* optimality of backpropagation implies that backpropagation min-
imizes the energy gain from the disturbances to the prediction errors, only if the
initial condition is close enough to the true weight vector and if the disturbances are
small enough. In this paper we derive global H* optimal estimators that minimize
the energy gain from the disturbances to the prediction errors for all initial condi-
tions and disturbances. The resulting estimator (given by Theorem 1) has growing
memory, which we refer to as being infinite-dimensional, since updating the weight
vector estimate requires knowledge of all previous weight estimates. When the un-
derlying model is linear, we show that this infinite-dimensional estimator reduces
to the finite-dimensional LMS filter. When the underlying model is nonlinear, the
infinite-dimensionality of the estimator may prohibit its practical applicablity, and
one needs to construct finite-dimensional approximations to this estimator. We
consider two such approximations here: one yields the backpropagation algorithm,
and the other is a second-order algorithm based on the Newton-Raphson iteration.
There are, no doubt, a wide variety of other approximations which should be worthy
of further scrutiny.

2 Robust Estimation

In estimation problems one assumes a certain model (say an FIR filter in adaptive
filtering, or a neural network), observes a corrupted version of the output of this
model, and wants to estimate the parameters associated with this model (say the
weights of the FIR filter or neural network). Most estimation algorithms make some
assumption about the nature of the disturbances, and then proceed to estimate the
parameters using some optimality criterion. To be more specific, we shall consider
the following two cases.

2.1 The Linear Case

Suppose that we observe an output sequence {d;} that obeys the following linear
model

di = 27w+ v, (1)
where :c,T = [ ®i1 iz ... &in ] is a known input vector, w is the unknown
weight vector that we intend to estimate, and {v;} is an unknown disturbance
sequence. Let w; = F(do, ds,...,d;) denote the estimate of the weight vector given

the inputs {z;} and the outputs {d;} from time 0 up to and including time i. The
most widely used estimate w;, is one that satisfies the following H 2 criterion

. - 2 T
min | Nw — w_4| +Z|dj—xj wl|? |, (2)
7=0

where g is a positive constant that reflects a priori knowledge as to how close w is

to the initial estimate w_;. The ezact solution to the above criterion is given by
the RLS algorithm (Haykin, 1991):

w; = wi_y + kpi(di — :c,Tw), w_q (3)
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where w_; denotes the initial value,
Piz;
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and r
Piz;x; P;

Pi :Pi— ’
+ 1+:cfP,-:c,-
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If we assume that in the model (1) the w — w_; and {v;} are zero-mean indepen-
dent Gaussian random variables with variances pI and 1, respectively, then the cost
function in (2) is simply the associated log-likelihood function. Thus the estimate
given by minimizing (2) will be the maximum-likelihood estimate of the weight vec-
tor w. In particular, it can be shown that under these assumptions, RLS minimizes
the expected prediction energy

i
E|el?= EZ |:cfw - :cfwj_1|2.
=0

Note that the LMS algorithm is an approximation to RLS where k, ; is replaced
by pzi, so that the estimates are updated along the direction of the instantaneous
gradient of (2):

w; = w1 + pei(di — :c?w), w_q. 4)

2.2 The Nonlinear Case

Suppose now that we observe an output sequence {d;} that obeys the following
nonlinear model

d; = g,-(w) + v, (5)
where g¢;(.) is a known nonlinear function (with bounded first and second order
derivatives), w is the unknown weight vector we intend to estimate, and {v;} is an
unknown disturbance sequence. In a neural network context the index i in g;(.)
will correspond to the nonlinear function that maps the weight vector to the output
when the ith input pattern is presented, i.e., g;(w) = g(zi, w) where z; is the ith
input pattern. As before we shall denote by w; = F(dy, ..., d;) the estimate of the
weight vector using measurements up to and including time i. The H? criterion for
finding the estimate is

min |4~ w —woy P+ ) |dj - gi(w)]? | - (6)
7=0

As in the linear case, if we assume that in the model (5) the disturbances w — w_;
and {v;} are zero-mean independent Gaussian random variables with variances pl
and 1, respectively, then the cost function in (6) is the log-likelihood function and
the weight vector that minimizes it is the maximum-likelihood estimate. However,
contrary to the linear case, the solution to (6) will not, in general, minimize the
expected prediction error energy.

In the nonlinear case exact solutions to (6) do not exist, and the backpropagation
algorithm is a generalization of the LMS algorithm where once more the estimates
are updated along the negative direction of the instantaneous gradient of the log-
likelihood function:

dg;
wi = wioy + pg (wim) (d — gi(wy)), w_1. (7)

Generalizations of the RLS algorithm to the nonlinear setting are the second order
Gauss-Newton methods.
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2.3 The Question of Robustness

In view of the above discussion we have seen that H?-optimal estimation strategies
(see (2) and (6)) are maximum-likelihood and minimize the expected prediction
error energy (in the linear case), if we assume that the disturbances are zero-mean
independent Gaussian random variables. However, the question that begs itself
is what the performance of such estimators will be if the assumptions on the dis-
turbances are violated, or if there are modelling errors in our model so that the
disturbances must include the modelling errors? In other words

- is it possible that small disturbances and modelling errors may lead to large esti-
mation errors?

Obviously a nonrobust algorithm would be one for which the above is true, and a
robust algorithm would be one for which small disturbances lead to small estimation
errors. (For example in the adaptive filtering problem, where we assumed an FIR
model, the true model may be IIR, but we neglect the tail of the filter since its
components are small. However, unless one uses a robust estimation algorithm, it
is conceivable that this small modelling error may result in large estimation errors.)

The problem of robust estimation is thus an important one, and is worthy of study
in its own right. Rather surprisingly, it had not received much attention until
quite recently. The H® criterion has been introduced (Zames, 1981) as a means
of studying such questions in the contexts of estimation and control. This is the
subject of the next section.

3 The H* Problem

The H® estimation formulation is an attempt to address the robustness question
raised in the previous section. The idea is to come up with estimators that minimize
(or in the suboptimal case bound) the maximum energy gain from the disturbances
to the estimation errors. This will guarantee that if the disturbances are small (in
energy) then the estimation errors will be as small as possible (in energy), no matter
what the disturbances are. In other words the maximum energy gain is minimized
over all possible disturbances. The robustness of the H* estimators arises from
this fact. Since they make no assumption about the disturbances, they have to
accomodate for all conceivable disturbances, and are thus over-conservative.

We once more assume that we observe an output sequence {d;} that obeys the
following nonlinear model

d; = gi(w) + vi, (8)
where g;(.) is a known nonlinear function, w is an unknown weight vector, and {v;}
is an unknown disturbance sequence that includes noise and/or modelling errors.
Recall that in a neural network context gi(w) = g(zi, w), where z; is the ith input
pattern. As before we shall denote by w; = F(dy, ..., d;) the estimate of the weight
vector using measurements up to and including time 7, and the prediction error by

ei = gi(w) — gi(wi-1).

The optimal H*® estimation problem may now be stated as follows.

Problem 1 (Optimal H* Estimation Problem) Find an H>-optimal esti-
mation strategy w; = F(do, d1,...,d;) that minimizes the marimum energy gain
from the disturbances w — w_, and {v;} to the prediction errors {e; = gi(w) —
gi(wi—1)}, and obtain the resulting

2 i 9
: =0 195 (w) — g; (w;—
2~ inf sup llell: _inf sup 2j=019i(w) — gj (wj-1)|
pt F -1 2 2 F -1 2 3 2
wvehy T w — w_1|? + ||| wuehy ptw —woy|2 + 370 |vj

(©)
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where pp > 0 reflects a priori knowledge of how close w is to the initial estimate
w_1, and where hy s the space of all causal square-summable sequences. ~Yop: 1s the
so-called mintmum H*® norm.

Note that the infimum in (9) is taken over all causal estimators F. Although the
H® estimation problem has been solved in the linear case, to date there does not
exist a satisfactory solution for the nonlinear case, and indeed the class of nonlinear
functions g;(.) for which the above problem has a solution is not known (Ball and
Helton, 1992).

We have, however, been able to solve Problem 1 in the case where the g;(.) are
bounded functions with bounded first and second order derivatives. These con-
ditions are of course satisfied by multi-layer neural networks with sigmoidal ele-
ments. The result is stated below, where we call the column vectors {z;} ezciting

if lim; 00 Z;-ﬂ, :c;:cj = 0.

Theorem 1 (H* Optimal Algorithm) Consider the model (8) where the g;(.)
are bounded and have bounded first and second order derivatives, and suppose we
wish to minimize the mazimum energy gain from the unknowns w — w_; and {v;}
to the prediction errors {e;}. If
1
0 < p < infinf ———, (10)
i w |2 (w))?

and the {2%:(w)} are exciting, then the minimum H* norm is
ow

Yopt = 1.

In this case an optimal H® estimator is given by the following sequence of nonlinear
equations

[ wo = (do—go(w-1)) 52 (wo)
swi = (do— go(w-1)) 52 (w1) + (d1 — g1 (wo)) 52 (wn)
3 : : (11)
Lwi = (do— go(w-1)) 52 (wi) + (d1 — g1 (wo)) 52 (wi)+
o (d — gi(wis1) 52 (wi)

Remarks:

(i) The fact that g;(w) = g;(w;—1) implies that the output prediction has the
same structure as our model (i.e. that there exists a weight vector estimate
w;_; that yields the desired output prediction).

(11) Theorem 1 states that 7,,; = 1. While it is not intuitively difficult to
convince oneself that ~,p; cannot be less than one (simply choose the dis-
turbances v; so that v; = e;, whereby the ratio in (9) can be made arbitrarily
close to one), the surprising fact is that ~,p; is one. What this means is that
the estimator of Theorem 1 guarantees that the energy of the prediction
errors will never exceed the energy of the disturbances. This is of course
not true of other estimators.

(iii) Theorem 1 gives an upper bound on the quantity x that guarantees v,,; =
1. As we shall see below, the p of Theorem 1 is a generalization of the
learning rate p of the LMS and backpropagation algorithms (see (4) and
(7)), and this is in accordance with the well-known fact that LMS and
backpropagation behave poorly if the learning rate is chosen too large.
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(iv) In view of Theorem 1, to obtain the estimate w; we need to solve a nonlin-
ear equation that involves all previous estimates wy, ..., w;—1. This means
that the estimator (11) is infinite-dimensional. Although this may prohibit
practical applications of this algorithm, it will be very useful to study spe-
cial cases under which the estimator becomes finite-dimensional, or to find
finite-dimensional approximations for (11). This will be done in the next
section.

4 Special Cases

4.1 The Linear Case

In the linear case the model we consider has

gi(w) = 2T w,
so that 92 (w) = z;. Although the linear function g;(w) = 7 w does not satisfy the
boundedness condition of Theorem 1, let us investigate the consequence of applying
algorithm (11) to this case. Thus the (i + 1)th equation in (11) becomes

1
L= (do—zf w_1)zo+(dy—2] wo)z1+. . +(dim1—2]_ jwi_2)zi_1+(di—2] wi_1)z;.

But from the ith equation

1
;wz’—l = (do — zFTw_1)zo + (d; — eTwo)ey + ... + (dimy — el Jwi_s)zi_y

so that
lwi = lwi—1 + (di — el wi_y)a, (12)
p B '
which is the LMS algorithm (4). Thus in the linear case the estimator of Theorem 1
specializes to the LMS algorithm. This is expected since we have shown in (Hassibi
et al., 1994) that the LMS algorithm is H* optimal. The result obtained there is

as follows.

Theorem 2 (LMS Algorithm) Consider the model (1), and suppose we wish to
minimize the marimum energy gain from the unknowns w — w_, and v; to the
prediction errors e;. If the input vectors z; are exciting and

1
0 inf — 13
<p<infrs (13)
then the minitmum H* norm is Yopt = 1. In this case an optimal H*® estimator is
given by the LMS algorithm with learning rate p, viz.

w; = wi—y + pxi(di — = wi—1) s w_y (14)

Note that in the linear case the estimator is finite-dimensional since to find w; we
only require knowledge of w;_;.

4.2 Backpropagation

As mentioned at the end of Section 3, the H* optimal estimator of Theorem 1 is
infinite-dimensional, in the sense that to obtain the estimate w; we need all previous
estimates wo, ..., w;_;. We may obtain finite-dimensional approximations to the
estimator (11) by constructing approximations to the nonlinear equations appearing
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in (11). However, the resulting estimators will no longer be H* optimal in a global
sense, but will only have local optimality.

The method that we shall use to obtain such approximate estimators is to assume
that we have found the estimate w;_,, and to use it as an initial guess to solve the
(2 + 1)th equation in (11) whose solution is w;. Depending on what algorithm we
use to solve the (i + 1)th equation with initial guess w;_, we shall get a different
approximate estimator to (11).

To this end, suppose that we have solved the ith equation in (11) and have obtained
W;-1, i.e.

%wi—l = (do — go(‘w-1))%(wi_1) + ..+ (dio1 — gi—l(wi-z))ag’;l (wi-1).

We now intend to solve the (i+ 1)th equation in (11) for w;. Note that this equation
is of the form z = f(z) (where & = w;). If we use one step of the fired-point iteration
method ;4+1 = f(x;) with imtial condition zq = w;_1, we have

ll‘wi = Edo — go(w—l))%%](wi—l) o +v(di—1 — gi—1(wi_2)) 6?1;1 (wi—1{15)
’ Bgi

H(di — gi(wi1)) 5 (wi-1) (16)

- %w.-_l +(d— gs(wi ) 2 ;) (17)

which is the backpropagation algorithm (7). Note that since we only use w;_; to
compute w;, backpropagation is a finite-dimensional approximation to the global
H* optimal estimator (11). Due to its approximate nature, backpropagation has
only local H*® optimality properties, as we have shown in (Hassibi et al., 1994).
The result is stated below, where the column vectors {z;} are called persistently

exciting if, lim; 00 %Z;:O zjz} > al, for some a > 0.

Theorem 3 (Local H® Optimality) Consider the model (8) and the backprop-

agation algorithm (7). Suppose that the %%‘(w,-_l) are persistently exciting, and
that (10) is satisfied. Then for each € > 0, there exist §;,d; > 0 such that for all
|w—w_1| < é; and all v € hy with |v;| < d, we have

lel? <lae
PRI Py

Note that contrary to the global Theorem 1, backpropagation cannot achieve yop; =
1, and that it bounds the energy gain by /1 + € only for small enough disturbances.

4.3 A Second-Order Algorithm

If instead of using one step of the fixed-point iteration to solve for w;, as was done in
Section 4.2, we use one step of the Newton-Raphson method with initial condition
w;_1, we obtain the following algorithm as an approximation to (11).

w; = wi—1+ pd; _gi(wi—l))(bi%%'(wi—l)a w-1
) (18)
®; = By +pdimy — gi—1(wi-2)) Tt (wio2), @y = 1.

As before, (18) has only local optimality properties. However, since the Newton-
Raphson method is less crude than the fixed-point iteration, it is expected to have
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better local properties than backpropagation. The complexity of the algorithm is
O(n?) per iteration which is, of course, higher than backpropagation which requires
only O(n) per iteration.

5 Conclusion

We have derived global H* optimal estimators for training neural networks. Such
H® optimal algorithms will be most applicable in uncertain environments where
there may be modelling errors, and where the statistics and/or distributions of the
disturbances are not known (or are too expensive to obtain).

The resulting H* optimal algorithm of Theorem 1 is infinite-dimensional, so that
computing the most recent weight vector estimate requires knowledge of all previ-
ous weight estimates. We considered two finite-dimensional approximations to this
estimator (one of which was backpropagation) with the property that constructing
the most recent weight estimate required only the immediately preceding weight
estimate. However, the estimator of Theorem 1 has a very interesting structure
that should allow for a wide variety of approximations, some of which may yield
alternatives to the backpropagation algorithm. In particular, it would be interest-
ing to study the possiblity of constructing estimators where updating the weight
estimates requires more than one (but only finitely many) previous estimates.

The estimators constructed in this paper used prediction error as their criterion and
should therefore have good generalization properties. It is also possible to construct
similar estimators using filtered or smoothing error as the criterion, though this was
not, done due to lack of space.
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