
The Gamma MLP for Speech Phoneme 
Recognition 

Steve Lawrence~ Ah Chung Tsoi, Andrew D. Back 
{lawrence,act,back}Oelec.uq.edu.au 

Department of Electrical and Computer Engineering 
University of Queensland 

St. Lucia Qld 4072 Australia 

Abstract 

We define a Gamma multi-layer perceptron (MLP) as an MLP 
with the usual synaptic weights replaced by gamma filters (as pro­
posed by de Vries and Principe (de Vries and Principe, 1992)) and 
associated gain terms throughout all layers. We derive gradient 
descent update equations and apply the model to the recognition 
of speech phonemes. We find that both the inclusion of gamma 
filters in all layers, and the inclusion of synaptic gains, improves 
the performance of the Gamma MLP. We compare the Gamma 
MLP with TDNN, Back-Tsoi FIR MLP, and Back-Tsoi I1R MLP 
architectures, and a local approximation scheme. We find that the 
Gamma MLP results in an substantial reduction in error rates. 

1 INTRODUCTION 

1.1 THE GAMMA FILTER 

Infinite Impulse Response (I1R) filters have a significant advantage over Finite Im­
pulse Response (FIR) filters in signal processing: the length of the impulse response 
is uncoupled from the number of filter parameters. The length of the impulse re­
sponse is related to the memory depth of a system, and hence I1R filters allow a 
greater memory depth than FIR filters of the same order. However, I1R filters are 

*http://www.neci.nj.nec.com/homepages/lawrence 
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not widely used in practical adaptive signal processing. This may be attributed 
to the fact that a) there could be instability during training and b) the gradient 
descent training procedures are not guaranteed to locate the global optimum in the 
possibly non-convex error surface (Shynk, 1989). 

De Vries and Principe proposed using gamma filters (de Vries and Principe, 1992), 
a special case of IIR filters, at the input to an otherwise standard MLP. The gamma 
filter is designed to retain the uncoupling of memory depth to the number of pa­
rameters provided by IIR filters, but to have simple stability conditions. 

The output of a neuron 
I f ("",Nr-l I 1-1) Yk = L--i=O WkiYi . 

term memory with delays: 

in a multi-layer perceptron is computed using1 

De Vries and Principe consider adding short 

I - f ("",Nr-l "",K I (t .) 1-1 (t .)) h Yk - L--i=O L--j=O 9kij - J Yi - J were 

9~ij = (r!i)! tj-le-/-'~it j = 1, ... , K . The depth of the memory is controlled 
by J.t, and K is the order of the filter. For the discrete time case, we obtain the 
recurrence relation: zo(t) = x(t) and Zj(t) = (1 - J.t)Zj(t - 1) + J.tZj-l (t - 1) for 
j = 1, ... , K. In this form, the gamma filter can be interpreted as a cascaded series 
of filter modules, where each module is a first order IIR filter with the transfer func-

tion q-(I-/-,) , where qZj(t) ~ Zj(t + 1). We have a filter with K poles, all located 
at 1 - J.t. Thus, the gamma filter may be considered as a low pass filter for J.t < 1. 
The value of J.t can be fixed, or it can be adapted during training. 

2 NETWORK MODELS 

Figure 1: A gamma filter synapse with an associated gain term 'c'. 

We have defined a gamma MLP as a multi-layer perceptron where every synapse 
contains a gamma filter and a gain term, as shown in figure 1. The motivation 
behind the inclusion of the gain term is discussed later. A separate J.t parameter 
is used for each filter. Update equations are derived in a manner analogous to the 
standard MLP and can be found in Appendix A. The model is defined as follows. 

lwhere yi is the output of neuron k in layer I, Nl is the number of neurons in layer I, 
Wii is the weight connecting neuron k in layer I to neuron i in layer I - 1, yb = 1 (bias), 
and / is commonly a sigmoid function. 
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Definition 1 A Gamma MLP with L layers excluding the input layer (0,1, ... , L), 
gamma filters of order K, and No, N 1 , ... , NL neurons per layer, is defined as 

Ziij (t) 

Ziij (t) 

f (x~ (t)) 
N'-l K 

L C~i(t) L wLj (t)Zkij (t) 
i=O j=O 

(1- ILL(t))zkij(t -1) + ILL(t)zki(j_I)(t -1) 

y!-l (t) 

where y(t) = neuron output, c'ki = synaptic gain, f(a) = 

1,2, ... ,N,(neuronindex), I = 0,1, ... ,L(layer), and Ziijli=O = 

0, C~ij li=O = 1(bias). 

1 ~j ~ K 

j=O 

eO / 2 _e- o / 2 

eO/2+e 0/2, k 
1, W~ij li=O,#O 

(1) 

o 

For comparison purposes, we have used the TDNN (Time Delay Neural Network) 
architecture2 , the Back-Tsoi FIR3 and I1R MLP architectures (Back and Tsoi, 
1991a) where every synapse contains an FIR or I1R filter and a gain term, and the 
local approximation algorithm used by Casdagli (k-NN LA) (Casdagli, 1991)4. The 
Gamma MLP is a special case of the I1R MLP. 

3 TASK 

3.1 MOTIVATION 

Accurate speech recognition requires models which can account for a high degree 
of variability in the data. Large amounts of data may be available but it may be 
impractical to use all of the information in standard neural network models. 

Hypothesis: As the complexity of a problem increases (higher dimensionality, greater 
variety of training data), the error surface of a neural network becomes more com­
plex. It may contain a number of local minima5 many of which may be much worse 
than the global minimum. The training (parameter estimation) algorithms become 
"stuck" in local minima which may be increasingly poor compared to the global 
optimum. The problem suffers from the so called "curse of dimenSionality" and the 

2We use TDNN to refer to an MLP with a time window of inputs, not the replicated 
architecture introduced by Lang (Lang et al., 1990) . 

3We distinguish the Back-Tsoi FIR network from the Wan FIR network in that the 
Wan architecture has no synaptic gains, and the update algorithms are different. The 
Back-Tsoi update algorithm has provided better convergence in previous experiments. 

4Casdagli created an affine model of the following form for each test pattern: yi = 
aD + L~=l ai~, where k is the number of neighbors, j = 1, ... , k, and n is the input 
dimension. The resulting model is used to find y for the test pattern. 

5We note that it can be difficult to distinguish a true local minimum from a long plateau 
in the standard backpropagation algorithm. 
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difficulty in optimizing a function with limited control over the nature of the error 
surface. 

We can identify two main reasons why the application of the Gamma MLP may 
be superior to the standard TDNN for speech recognition: a) the gamma filtering 
operation allows consideration of the input data using different time resolutions and 
can account for more past history of the signal which can only be accounted for in 
an FIR or TDNN system by increasing the dimensionality of the model, and b) 
the low pass filtering nature of the gamma filter may create a smoother function 
approximation task, and therefore a smoother error surface for gradient descent6 . 

3.2 TASK DETAILS 

Model Input Window 

Networl( Output 1 
[~ 

Classification 0 Target Function 

Networl( Output 2 

II 
; j : 

~} ...::.. ...:::'.!'} ~.} ,.;:!.. ""::'I'} 
. ; i ~ 

! l I ~ 

Frames of RASTA data ~ Sequence End ~ 
Figure 2: PLP input data format and the corresponding network target functions for the 
phoneme "aa" . 

Our data consists of phonemes extracted from the TIMIT database and organized 
as a number of sequences as shown in figure 2 (example for the phoneme "aa"). 
One model is trained for each phoneme. Note that the phonemes are classified in 
context, with a number of different contexts, and that the surrounding phonemes 
are labelled only as not belonging to the target phoneme class. Raw speech data 
was pre-processed into a sequence of frames using the RASTA-PLP v2.0 software7. 

We used the default options for PLP analysis. The analysis window (frame) was 
20 ms. Each succeeding frame overlaps with the preceding frame by 10 ms. 9 
PLP coefficients together with the signal power are extracted and used as features 
describing each frame of data. Phonemes used in the current tests were the vowel 
"aa" and the fricative "s" . The phonemes were extracted from speakers coming 
from the same demographic region in the TIMIT database. Multiple speakers were 
used and the speakers used in the test set were not contained in the training set. 
The training set contained 4000 frames, where each phoneme is roughly 10 frames. 
The test set contained 2000 frames, and an additional validation set containing 2000 
frames was used to control generalization. 

6If we consider a very simple network and derive the relationship of the smoothness of 
the required function approximation to the smoothness of the error surface this statement 
appears to be valid. However, it is difficult to show a direct relationship for general 
networks. 

7 Obtained from ftp:/ /ftp.icsi.berkeley.edu/pub/speech/rasta2.0.tar.Z. 



The Gamma MLP for Speech Phoneme Recognition 789 

4 RESULTS 

Two outputs were used in the neural networks as shown by the target functions in 
figure 2, corresponding to the phoneme being present or not. A confidence criterion 
was used: Ymax x (Ymax - Ymin) (for soft max outputs). The initial learning rate was 
0.1, 10 hidden nodes were used, FIR and Gamma orders were 5 (6 taps), the TDNN 
and k-NN models had an input window of 6 steps in time, the tanh activation func­
tion was used, target outputs were scaled between -0.8 and 0.8, stochastic update 
was used, and initial weights were chosen from a set of candidates based on training 
set performance. The learning rate was varied over time according to the schedule: 

'TI = 'TIo/ (N/2 + ( ",~!(o . Cj(n C2 N »)) where'TI = learning rate, 'TIo = initial 
max 1,(cI- (I C2)N 

learning rate, N = total epochs, n = current epoch, Cl = 50, C2 = 0.65. This is 
similar to the schedule proposed in (Darken and Moody, 1991) with an additional 
term to decrease the learning rate towards zero over the final epochs8 . 

I Train Error % I 2-NN I 5-NN I 1st layer I All layers I Gains 1st layer I Gains all layers , , 
FIR MLP 17.6 0.43 14.5 1.5 27.2 0 .59 40.9 19.8 

Gamma MLP 7.78 0 .39 5.73 0 .88 6 .07 0 .12 5.63 1.68 
TDNN 14.4 0.86 

k-NN LA 0 0 

, , I Test Error % I 2-NN I 5-NN list layer I All layers I Gams 1st layer I Gams all layers I 
FIR MLP 22.2 0.97 20.4 0 .61 29 0.14 41 21 

Gamma MLP 14 .7 0.16 13.5 0 .33 12.8 1.0 12.7 0.50 
TDNN 24.5 0 .68 

k-NN LA 31 28.4 

I Test False +ve I 2-NN I 5-NN list layer I All layers I Gams 1st layer I Gams all layers I , , 
FIR MLP 13.5 0 .67 11.4 2.0 4.5 0 .77 31.3 49.0 

Gamma MLP 7 .94 0.45 7 .01 0.47 6.83 0 .34 8.05 1.8 
TDNN 13 0 .27 

k-NN LA 22.6 17.4 

, , I Test False -ve I 2-NN I 5-NN list layer I All layers I Gams 1st layer I Gams all layers I 
FIR MLP 44.9 2 .6 44.1 5 .6 92.9 2.4 66.4 53 

Gamma MLP 32 .2 1.2 30.4 2.2 28.4 2 .8 24.7 4.4 
TDNN 54.6 1.8 

k-NN LA 53 56.8 

Table 1: Results comparing the architectures and the use of filters in all layers and 
synaptic gains for the FIR and Gamma MLP models. The NMSE is followed by the 
standard deviation. The TDNN results are listed under an arbitrary column heading 
(gains and 1st layer/alilayers does not apply). 

The results of the simulations are shown in table 19 . Each result represents an 
average over four simulations with different random seeds - the standard deviation 
of the four individual results is also shown. The FIR and Gamma MLP networks 
have been tested both with and without synaptic gains, and with and without 
filters in the output layer synapses. These results are for the models trained on 
the "s" phoneme, results for the "aa" phoneme exhibit the same trend. "Test false 
negative" is probably the most important result here, and is shown graphically 
in figure 3. This is the percentage of times a true classification (ie. the current 

8Without this term we have encountered considerable parameter fluctuation over the 
last epoch. 

9NMSE = 2:~=1 (d(k) - y(k))2 I (2:~=1 (d(k) - (2:~=1 d(k)) INr) IN. 
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Figure 3: Percentage of false negative classifications on the test set. NG=No gains, 
G=Gains, lL=filters in the first layer only, AL=filters in all layers. The error bars show 
plus and minus one standard deviation. The synaptic gains case for the FIR MLP is not 
shown as the poor performance compresses the remainder of the graph. Top to bottom, 
the lines correspond to: k-NN LA (left), TDNN, FIR MLP, and Gamma MLP. 

phoneme is present) is incorrectly reported as false. From the table we can see 
that the Gamma MLP performs Significantly better than the FIR MLP or standard 
TDNN models for this problem. Synaptic gains and gamma filters in all layers 
improve the performance of the Gamma MLP, while the inclusion of synaptic gains 
presented difficulty for the FIR MLP. Results for the IIR MLP are not shown - we 
have been unable to obtain significant convergencelO . We investigated values of k 
not listed in the table for the k-NN LA model, but it performed poorly in all cases. 

5 CONCLUSIONS 

We have defined a Gamma MLP as an MLP with gamma filters and gain terms in 
every synapse. We have shown that the model performs significantly better on our 
speech phoneme recognition problem when compared to TDNN, Back-Tsoi FIR and 
IIR MLP architectures, and Casdagli's local approximation model. The percentage 
of times a phoneme is present but not recognized for the Gamma MLP was 44% 
lower than the closest competitor, the Back-Tsoi FIR MLP model. 

The inclusion of gamma filters in all layers and the inclusion of synaptic gains im­
proved the performance of the Gamma MLP. The improvement due to the inclusion 
of synaptic gains may be considered non-intuitive to many - we are adding degrees 
of freedom, but no additional representational power. The error surface will be dif­
ferent in each case, and the results indicate that the surface for the synaptic gains 
case is more amenable to gradient descent. One view of the situation is seen by 
Back & Tsoi with their FIR and IIR MLP networks (Back and Tsoi, 1991b): From 
a signal processing perspective the response of each synapse is determined by pole­
zero positions. With no synaptic gains, the weights determine both the static gain 
and the pole-zero positions of the synapses. In an experimental analysis performed 
by Back & Tsoi it was observed that some synapses devoted themselves to model-

lOTheoretically, the IIR MLP model is the most powerful model used here. Though it 
is prone to stability problems, the stability of the model can and was controlled in the 
simulations performed here (basically, by reflecting poles that move outside the unit circle 
back inside). The most obvious hypothesis for the difficulty in training the model is related 
to the error surface and the nature of gradient descent. We expect the error surface to be 
considerably more complex for the IIR MLP model, and for gradient descent update to 
experience increased difficulty optimizing the function. 
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ing the dynamics of the system in question, while others "sacrificed" themselves to 
provide the necessary static gainsll to construct the required nonlinearity. 

APPENDIX A: GAMMA MLP UPDATE EQUATIONS 

~W~i;(t) 

~C~i(t) 

~J'~i (t) 

o 

= 

= 

8J(t) I I I 
-'1 8 I () = '16" (t)c", (t)Z"i; (t) 

w",; t 

= (1 - J'~i(t))a~,;(t -1) + J'~i(t)a~iC;_I)(t - 1) 
+z~,(;_I)(t -1) - Z~i;(t - 1) 

1 

(1 - J';,,(t)).B;,,;(t -1) + J';,,(t).B~"(;_l) (t - 1) 
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