
Laterally Interconnected Self-Organizing 
Maps in Hand-Written Digit Recognition 

Yoonsuck Choe, Joseph Sirosh, and Risto Miikkulainen 
Department of Computer Sciences 
The University of Texas at Austin 

Austin, TX 78712 
yschoe,sirosh,risto@cs. u texas .ed u 

Abstract 

An application of laterally interconnected self-organizing maps 
(LISSOM) to handwritten digit recognition is presented. The lat­
eral connections learn the correlations of activity between units on 
the map. The resulting excitatory connections focus the activity 
into local patches and the inhibitory connections decorrelate redun­
dant activity on the map. The map thus forms internal representa­
tions that are easy to recognize with e.g. a perceptron network. The 
recognition rate on a subset of NIST database 3 is 4.0% higher with 
LISSOM than with a regular Self-Organizing Map (SOM) as the 
front end, and 15.8% higher than recognition of raw input bitmaps 
directly. These results form a promising starting point for building 
pattern recognition systems with a LISSOM map as a front end. 

1 Introduction 
Hand-written digit recognition has become one of the touchstone problems in neural 
networks recently. Large databases of training examples such as the NIST (National 
Institute of Standards and Technology) Special Database 3 have become available, 
and real-world applications with clear practical value, such as recognizing zip codes 
in letters, have emerged. Diverse architectures with varying learning rules have 
been proposed, including feed-forward networks (Denker et al. 1989; Ie Cun et al. 
1990; Martin and Pittman 1990), self-organizing maps (Allinson et al. 1994), and 
dedicated approaches such as the neocognitron (Fukushima and Wake 1990) . 

The problem is difficult because handwriting varies a lot, some digits are easily 
confusable, and recognition must be based on small but crucial differences. For ex­
ample, the digits 3 and 8, 4 and 9, and 1 and 7 have several overlapping segments, 
and the differences are often lost in the noise. Thus, hand-written digit recogni­
tion can be seen as a process of identifying the distinct features and producing an 
internal representation where the significant differences are magnified, making the 
recognition easier. 
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In this paper, the Laterally Interconnected Synergetically Self-Organizing Map ar­
chitecture (LISSOM; Sirosh and Miikkulainen 1994, 1995, 1996) was employed to 
form such a separable representation. The lateral inhibitory connections of the LIS­
SOM map decorrelate features in the input, retaining only those differences that are 
the most significant . Using LISSOM as a front end, the actual recognition can be 
performed by any standard neural network architecture, such as the perceptron. 

The experiments showed that while direct recognition of the digit bitmaps with a 
simple percept ron network is successful 72.3% of the time, and recognizing them 
using a standard self-organizing map (SOM) as the front end 84.1% of the time, 
the recognition rate is 88.1 % based on the LISSOM network . These results suggest 
that LISSOM can serve as an effective front end for real-world handwritten character 
recognition systems. 

2 The Recognition System 
2.1 Overall architecture 
The system consists of two networks: a 20 x 20 LISSOM map performs the feature 
analysis and decorrelation of the input, and a single layer of 10 perceptrons the final 
recognition (Figure 1 (a)) . The input digit is represented as a bitmap on the 32 x 32 
input layer. Each LISSOM unit is fully connected to the input layer through the af­
ferent connections, and to the other units in the map through lateral excitatory and 
inhibitory connections (Figure 1 (b)). The excitatory connections are short range, 
connecting only to the closest neighbors of the unit, but the inhibitory connections 
cover the whole map. The percept ron layer consists of 10 units, corresponding to 
digits 0 to 9. The perceptrons are fully connected to the LISSOM map, receiv­
ing the full activation pattern on the map as their input . The perceptron weights 
are learned through the delta rule, and the LISSOM afferent and lateral weights 
through Hebbian learning. 

2.2 LISSOM Activity Generation and Weight Adaptation 
The afferent and lateral weights in LISSOM are learned through Hebbian adapta­
tion. A bitmap image is presented to the input layer , and the initial activity of 
the map is calculated as the weighted sum of the input . For unit (i, j), the initial 
response TJij IS 

TJij = (7 ('2: eabllij,ab) , 
a,b 

(1) 

where eab is the activation of input unit (a, b), Ilij ,ab is the afferent weight connecting 
input unit ( a, b) to map unit (i, j), and (7 is a piecewise linear approximation of 
the sigmoid activation function . The activity is then settled through the lateral 
connections. Each new activity TJij (t) at step t depends on the afferent activation 
and the lateral excitation and inhibition: 

TJiAt) = (7 ('2: eabllij,ab + Ie '2: Eij ,kITJkl(t - 1) - Ii '2: Iij,kITJkl(t - 1)), (2) 
a,b k,l k ,l 

where Eij ,kl and Iij,kl are the excitatory and inhibitory connection weights from 
map unit (k, l) to (i, j) and TJkl(t - 1) is the activation of unit (k , I) during the 
previous time step. The constants I e and Ii control the relative strength of the 
lateral excitation and inhibition. 

After the activity has settled, the afferent and lateral weights are modified according 
to the Hebb rule. Afferent weights are normalized so that the length of the weight 
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Figure 1: The system architecture. (a) The input layer is activated according to the 
bitmap image of digit 6. The activation propagates through the afferent connections to 
the LISSOM map, and settles through its lateral connections into a stable pattern. This 
pattern is the internal representation of the input that is then recognized by the perceptron 
layer. Through ,the connections from LISSOM to the perceptrons, the unit representing 6 
is strongly activated, with weak activations on other units such as 3 and 8. (b) The lateral 
connections to unit (i, j), indicated by the dark square, are shown. The neighborhood 
of excitatory connections (lightly shaded) is elevated from the map for a clearer view. 
The units in the excitatory region also have inhibitory lateral connections (indicated by 
medium shading) to the center unit. The excitatory radius is 1 and the inhibitory radius 
3 in this case. 

vector remains the same; lateral weights are normalized to keep the sum of weights 
constant (Sirosh and Miikkulainen 1994): 

.. (t + 1) - Ilij,mn(t) + crinp1]ij~mn 
IllJ,mn - VLmn[llij,mn(t) + crinp1]ij~mnF' (3) 

.. (t + 1) _ Wij,kl(t) + cr1]ij1]kl 
W1J,kl - "'" [ ( ) ] , 

wkl Wij ,kl t + cr1]ij1]kl 
(4) 

where Ilij,mn is the afferent weight from input unit (m, n) to map unit (i, j), and 
crinp is the input learning rate; Wij ,kl is the lateral weight (either excitatory Eij ,kl 

or inhibitory Iij ,kl) from map unit (k, I) to (i, j), and cr is the lateral learning rate 
(either crexc or crinh). 

2.3 Percept ron Output Generation and Weight Adaptation 
The perceptrons at the output of the system receive the activation pattern on the 
LISSOM map as their input. The perceptrons are trained after the LISSOM map 
has been organized. The activation for the perceptron unit Om is 

Om = CL1]ij Vij,m, 

i,j 

(5) 

where C is a scaling constant, 1]ij is the LISSOM map unit (i,j), and Vij,m is the 
connection weight between LISSOM map unit (i,j) and output layer unit m. The 
delta rule is used to train the perceptrons: the weight adaptation is proportional to 
the map activity and the difference between the output and the target: 

Vij,m(t + 1) = Vij,m(t) + crout1]ij((m - Om), (6) 
where crout is the learning rate of the percept ron weights, 1]ij is the LISSOM map 
unit activity, (m is the target activation for unit m. ((m = 1 if the correct digit = 
m, 0 otherwise). 
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I Representation I Training Test 

LISSOM 93.0/ 0.76 88.1/ 3.10 
SOM 84.5/ 0.68 84.1/ 1.71 

Raw Input 99.2/ 0.06 72.3/ 5.06 

Table 1: Final Recognition Results. The average recognition percentage and its 
variance over the 10 different splits are shown for the training and test sets. The 
differences in each set are statistically significant with p > .9999. 

3 Experiments 
A subset of 2992 patterns from the NIST Database 3 was used as training and 
testing data. 1 The patterns were normalized to make sure taht each example had 
an equal effect on the LISSOM map (Sirosh and Miikkulainen 1994). LISSOM 
was trained with 2000 patterns. Of these, 1700 were used to train the perceptron 
layer, and the remaining 300 were used as the validation set to determine when 
to stop training the perceptrons. The final recognition performance of the whole 
system was measured on the remaining 992 patterns, which neither LISSOM nor 
the perceptrons had seen during training. The experiment was repeated 10 times 
with different random splits of the 2992 input patterns into training, validation , 
and testing sets. 

The LISSOM map can be organized starting from initially random weights. How­
ever, if the input dimensionality is large, as it is in case of the 32 X 32 bitmaps, 
each unit on the map is activated roughly to the same degree, and it is difficult to 
bootstrap the self-organizing process (Sirosh and Miikkulainen 1994, 1996). The 
standard Self-Organizing Map algorithm can be used to preorganize the map in 
this case. The SOM performs preliminary feature analysis of the input, and forms 
a coarse topological map of the input space. This map can then be used as the 
starting point for the LISSOM algorithm, which modifies the topological organi­
zation and learns lateral connections that decorrelate and represent a more clear 
categorization of the input patterns. 

The initial self-organizing map was formed in 8 epochs over the training set, grad­
ually reducing the neighborhood radius from 20 to 8. The lateral connections were 
then added to the system, and over another 30 epochs, the afferent and lateral 
weights of the map were adapted according to equations 3 and 4. In the beginning, 
the excitation radius was set to 8 and the inhibition radius to 20. The excitation 
radius was gradually decreased to 1 making the activity patterns more concentrated 
and causing the units to become more selective to particular types of input pat­
terns. For comparison, the initial self-organized map was also trained for another 30 
epochs, gradually decreasing the neighborhood size to 1 as well. The final afferent 
weights for the SOM and LISSOM maps are shown in figures 2 and 3. 

After the SOM and LISSOM maps were organized, a complete set of activation 
patterns on the two maps were collected. These patterns then formed the training 
input for the perceptron layer. Two separate versions were each trained for 500 
epochs, one with SOM and the other with LISSOM patterns. A third perceptron 
layer was trained directly with the input bitmaps as well. 

Recognition performance was measured by counting how often the most highly ac­
tive perceptron unit was the correct one. The results were averaged over the 10 
different splits. On average, the final LISSOM+perceptron system correctly recog­
nized 88.1% of the 992 pattern test sets. This is significantly better than the 84.1% 

1 Downloadable at ftp:j jsequoyah.ncsl.nist.gov jpubjdatabasesj. 
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Figure 2: Final Afferent Weights of the SOM map. The digit-like patterns represent 
the afferent weights of each map unit projected on the input layer. For example, the lower 
left corner represents the afferent weights of unit (0,0). High weight values are shown in 
black and low in white. The pattern of weights shows the input pattern to which this unit 
is most sensitive (6 in this case). There are local clusters sensitive to each digit category. 

of the SOM+perceptron system, and the 72.3% achieved by the perceptron layer 
alone (Table 1). These results suggest that the internal representations generated 
by the LISSOM map are more distinct and easier to recognize than the raw input 
patterns and the representations generated by the SOM map. 

4 Discussion 
The architecture was motivated by the hypothesis that the lateral inhibitory con­
nections of the LISSOM map would decorrelate and force the map activity patterns 
to become more distinct . The recognition could then be performed by even the 
simplest classification architectures, such as the perceptron. Indeed, the LISSOM 
representations were easier to recognize than the SOM patterns, which lends evi­
dential support to the hypothesis. In additional experiments , the percept ron output 
layer was replaced by a two-weight-Iayer backpropagation network and a Hebbian 
associator net, and trained with the same patterns as the perceptrons. The recog­
nition results were practically the same for the perceptron, backpropagation, and 
Hebbian output networks, indicating that the internal representations formed by 
the LISSOM map are the crucially important part of the recognition system. 

A comparison of the learning curves reveals two interesting effects (figure 4). First, 
even though the perceptron net trained with the raw input patterns initially per­
forms well on the test set, its generalization decreases dramatically during training. 
This is because the net only learns to memorize the training examples, which does 
not help much with new noisy patterns. Good internal representations are there­
fore crucial for generalization. Second, even though initially the settling process 
of the LISSOM map forms patterns that are significantly easier to recognize than 
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Figure 3: Final Afferent Weights of the LISSOM map. The squares identify the 
above-average inhibitory lateral connections to unit (10,4) (indicated by the thick square). 
Note that inhibition comes mostly from areas of similar functionality (i.e. areas sensitive to 
similar input), thereby decorrelating the map activity and forming a sparser representation 
of the input . 

the initial, unsettled patterns (formed through the afferent connections only), this 
difference becomes insignificant later during training. The afferent connections are 
modified according to the final, settled patterns, and gradually learn to anticipate 
the decorrelated internal representations that the lateral connections form. 

5 Conclusion 
The experiments reported in this paper show that LISSOM forms internal represen­
tations of the input patterns that are easier to categorize than the raw inputs and 
the patterns on the SOM map, and suggest that LISSOM can form a useful front 
end for character recognition systems, and perhaps for other pattern recognition 
systems as well (such as speech) . The main direction of future work is to apply 
the approach to larger data sets, including the full NIST 3 database, to use a more 
powerful recognition network instead of the perceptron, and to increase the map 
size to obtain a richer representation of the input space. 
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