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Abstract 

We investigate the effectiveness of stochastic hillclimbing as a baseline for 
evaluating the performance of genetic algorithms (GAs) as combinato­
rial function optimizers. In particular, we address two problems to which 
GAs have been applied in the literature: Koza's ll-multiplexer problem 
and the jobshop problem. We demonstrate that simple stochastic hill­
climbing methods are able to achieve results comparable or superior to 
those obtained by the GAs designed to address these two problems. We 
further illustrate, in the case of the jobshop problem, how insights ob­
tained in the formulation of a stochastic hillclimbing algorithm can lead 
to improvements in the encoding used by a GA. 

1 Introduction 

Genetic algorithms (GAs) are a class of randomized optimization heuristics based 
loosely on the biological paradigm of natural selection. Among other proposed ap­
plications, they have been widely advocated in recent years as a general method 
for obtaining approximate solutions to hard combinatorial optimization problems 
using a minimum of information about the mathematical structure of these prob­
lems. By means of a general "evolutionary" strategy, GAs aim to maximize an 
objective or fitness function 1 : 5 --t R over a combinatorial space 5, i.e., to find 
some state s E 5 for which 1(s) is as large as possible. (The case in which 1 is to 
be minimized is clearly symmetrical.) For a detailed description of the algorithm 
see, for example, [7], which constitutes a standard text on the subject. 

In this paper, we investigate the effectiveness of the GA in comparison with that 
of stochastic hillclimbing (SH), a probabilistic variant of hillclimbing. As the term 
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"hillclimbing" suggests, if we view an optimization problem as a "landscape" in 
which each point corresponds to a solution s and the "height" of the point corre­
sponds to the fitness of the solution, f(s), then hillclimbing aims to ascend to a 
peak by repeatedly moving to an adjacent state with a higher fitness. 

A number of researchers in the G A community have already addressed the issue 
of how various versions of hillclimbing on the space of bitstrings, {O, l}n, compare 
with GAs [1] [4] [9] [18] [15]. Our investigations in this paper differ in two important 
respects from these previous ones. First, we address more sophisticated problems 
than the majority of these studies, which make use of test functions developed for 
the purpose of exploring certain landscape characteristics. Second, we consider hill­
climbing algorithms based on operators in some way "natural" to the combinatorial 
structures of the problems to which we are seeking solutions, very much as GA de­
signers attempt to do. In one of the two problems in this paper, our SH algorithm 
employs an encoding exactly identical to that in the proposed GA. Consequently, 
the hillclimbing algorithms we consider operate on structures other than bitstrings. 

Constraints in space have required the omission of a great deal of material found 
in the full version of this paper. This material includes the treatment of two addi­
tional problems: the NP-complete Maximum Cut Problem [11] and an NP-complete 
problem known as the multiprocessor document allocation problem (MDAP). Also 
in the full version of this paper is a substantially more thorough exposition of the 
material presented here. The reader is encouraged to refer to [10], available on the 
World Wide Web at http://www.cs.berkeley.edu/,,-,juelsj. 

2 Stochastic Hillclimbing 

The SH algorithm employed in this paper searches a discrete space S with the aim 
of finding a state whose fitness is as high (or as low) as possible. The algorithm 
does this by making successive improvements to some current state 0" E S. As is 
the case with genetic algorithms, the form of the states in S depends upon how the 
designer of the SH algorithm chooses to encode the solutions to the problems to be 
solved: as bitstrings, permutations, or in some other form. The local improvements 
effected by the SH algorithm are determined by the neighborhood structure and the 
fitness function f imposed on S in the design of the algorithm. We can consider the 
neighborhood structure as an undirected graph G on vertex set S. The algorithm 
attempts to improve its current state 0" by making a transition to one of the neigh­
bors of 0" in G. In particular, the algorithm chooses a state T according to some 
suitable probability distribution on the neighbors of 0". If the fitness of T is as least 
as good as that of 0" then T becomes the new current state, otherwise 0" is retained. 
This process is then repeated 

3 GP and J obshop 

3.1 The Experiments 

In this section, we compare the performance of SH algorithms with that of GAs 
proposed for two problems: the jobshop problem and Koza's 11-multiplexer prob­
lem. We gauge the performance of the GA and SH algorithms according to the 
fitness of the best solution achieved after a fixed number of function evaluations, 
rather than the running time of the algorithms. This is because evaluation of the 
fitness function generally constitutes the most substantial portion of the execution 
time of the optimization algorithm, and accords with standard practice in the GA 
community. 
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3.2 Genetic Programming 

"Genetic programming" (GP) is a method of enabling a genetic algorithm to search 
a potentially infinite space of computer programs, rather than a space of fixed­
length solutions to a combinatorial optimization problem. These programs take the 
form of Lisp symbolic expressions, called S-expressions. The S-expressions in GP 
correspond to programs which a user seeks to adapt to perform some pre-specified 
task. Details on GP, an increasingly common GA application, and on the 11-
multiplexer problem which we address in this section, may be found, for example, 
in [13J [12J [14J. 

The boolean 11-multiplexer problem entails the generation of a program to per­
form the following task. A set of 11 distinct inputs is provided, with la­
bels ao, aI, a2, do, dl , ... , d7, where a stands for "address" and d for "data". Each 
input takes the value 0 or 1. The task is to output the value dm , where m = 
ao + 2al + 4a2. In other words, for any 11-bit string, the input to the "address" 
variables is to be interpreted as an index to a specific "data" variable, which the 
program then yields as output. For example, on input al = 1, ao = a2 = 0, 
and d2 = l,do = d l = d3 = ... = d7 = 0, a correct program will output a '1', since 
the input to the 'a' variables specifies address 2, and variable d2 is given input 1. 

The GA Koza's GP involves the use of a GA to generate an S-expression corre­
sponding to a correct ll-multiplexer program. An S-expression comprises a tree of 
LISP operators and operands, operands being the set of data to be processed - the 
leaves of the tree - and operators being the functions applied to these data and 
internally in the tree. The nature of the operators and operands will depend on the 
problem at hand, since different problems will involve different sets of inputs and 
will require different functions to be applied to these inputs. For the ll-multiplexer 
problem in particular, where the goal is to create a specific boolean function, the 
operands are the input bits ao, al, a2, do, d l , ... , d7, and the operators are AND, 
OR, NOT, and IF. These operators behave as expected: the subtree (AND al a2), 
for instance, yields the value al A a2. The subtree (IF al d4 d3) yields the value d4 
if al = 0 and d3 if al = 1 (and thus can be regarded as a "3-multiplexer"). NOT 
and OR work similarly. An S-expression constitutes a tree of such operators, with 
operands at the leaves. Given an assignment to the operands, this tree is evaluated 
from bottom to top in the obvious way, yielding a 0 or 1 output at the root. 

Koza makes use of a "mating" operation in his GA which swaps subexpressions 
between two such S-expressions. The sub expressions to be swapped are chosen 
uniformly at random from the set of all subexpressions in the tree. For details 
on selection in this GA, see [13J. The fitness of an S-expression is computed by 
evaluating it on all 2048 possible inputs, and counting the number of correct outputs. 
Koza does not employ a mutation operator in his GA. 

The SH Algorithm For this problem, the initial state in the SH algorithm is 
an S-expression consisting of a single operand chosen uniformly at random from 
{ ao, al, a2, do, ... , d7}. A transition in the search space involves the random replace­
ment of an arbitrary node in the S-expression. In particular, to select a neighboring 
state, we chose a node uniformly at random from the current tree and replace it 
with a node selected randomly from the set of all possible operands and operators. 
With probability ~ the replacement node is drawn uniformly at random from the 
set of operands {ao, al, a2, do, ... , d7}, otherwise it is drawn uniformly at random 
from the set of operators, {AND, OR, NOT, IF}. In modifying the nodes of the 
S-expression in this way, we may change the number of inputs they require. By 
changing an AND node to a NOT node, for instance, we reduce the number of in­
puts taken by the node from 2 to 1. In order to accommodate such changes, we do 
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the following. Where a replacement reduces the number of inputs taken by a node, 
we remove the required number of children from that node uniformly at random. 
Where, on the other hand, a replacement increases the number of inputs taken by a 
node, we add the required number of children chosen uniformly at random from the 
set of operands {ao, at, a2, do, ... , d7}. A similar, though somewhat more involved 
approach of this kind, with additional experimentation using simulated annealing, 
may be found in [17]. 

Experimental Results In the implementation described in [14], Koza performs 
experiments with a GA on a pool of 4000 expressions. He records the results 
of 54 runs. These results are listed in the table below. The average number of 
function evaluations required to obtain a correct program is not given in [14]. In 
[12], however, where Koza performs a series of 21 runs with a slightly different 
selection scheme, he finds that the average number of function evaluations required 
to find a correct S-expression is 46,667. 

In 100 runs of the SH algorithm, we found that the average time required to obtain a 
correct S-expression was 19,234.90 function evaluations, with a standard deviation 
of 5179.45. The minimum time to find a correct expression in these runs was 
3733, and the maximum, 73,651. The average number of nodes in the correct S­
expression found by the SH algorithm was 88.14; the low was 42, the high, 242, and 
the standard deviation, 29.16. 

The following table compares the results presented in [14], indicated by the heading 
"GP", with those obtained using stochastic hillclimbing, indicated by "SH". We 
give the fraction of runs in which a correct program was found after a given number 
of function evaluations. (As this fraction was not provided for the 20000 iteration 
mark in [14], we omit the corresponding entry.) 

I Functionevaluations II GP SH 

20000 61 % 
40000 28 % 98 % 
60000 78 % 99 % 
80000 90 % 100% 

We observe that the performance of the SH is substantially better than that of the 
GA. It is interesting to note - perhaps partly in explanation of the SH algorithm's 
success on this problem - that the SH algorithm formulated here defines a neigh­
borhood structure in which there are no strict local minima. Remarkably, this is 
true for any boolean formula. For details, as well as an elementary proof, see the 
full version of this paper [10]. 

3.3 Jobshop 

Jobshop is a notoriously difficult NP-complete problem [6] that is hard to solve 
even for small instances. In this problem, a collection of J jobs are to be scheduled 
on M machines (or processors), each of which can process only one task at a time. 
Each job is a list of M tasks which must be performed in order. Each task must 
be performed on a specific machine, and no two tasks in a given job are assigned to 
the same machine. Every task has a fixed (integer) processing time. The problem is 
to schedule the jobs on the machines so that all jobs are completed in the shortest 
overall time. This time is referred to as the makespan. 

Three instances formulated in [16] constitute a standard benchmark for this prob­
lem: a 6 job, 6 machine instance, a 10 job, 10 machine instance, and a 20 job, 5 
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machine instance. The 6x6 instance is now known to have an optimal makespan of 
55. This is very easy to achieve. While the optimum value for the 10x10 problem 
is known to be 930, this is a difficult problem which remained unsolved for over 20 
years [2]. A great deal of research has also been invested in the similarly challenging 
20x5 problem, for which an optimal value of 1165 has been achieved, and a lower 
bound of 1164 [3]. 

A number of papers have considered the application of GAs to scheduling problems. 
We compare our results with those obtained in Fang et al. [5], one of the more recent 
of these articles. 

The GA Fang et al. encode a jobshop schedule in the form of a string of in­
tegers, to which their GA applies a conventional crossover operator. This string 
contains JM integers at, a2,' .. , aJM in the range 1..J. A circular list C of jobs, 
initialized to (1,2, ... , J) is maintained. For i = 1,2, ... , JM, the first uncompleted 
task in the (ai mod ICl)th job in C is scheduled in the earliest plausible timeslot. 
A plausible timeslot is one which comes after the last scheduled task in the current 
job, and which is at least as long as the processing time of the task to be scheduled. 
When a job is complete, it is removed from C. Fang et al. also develop a highly 
specialized GA for this problem in which they use a scheme of increasing mutation 
rates and a technique known as GVOT (Gene-Variance based Operator Targeting). 
For the details see [5]. 

The SH Algorithm In our SH algorithm for this problem, a schedule is encoded 
in the form of an ordering U1,U2, ... ,UJM of JM markers. These markers have 
colors associated with them: there are exactly M markers of each color of 1, ... , J. 
To construct a schedule, U is read from left to right. Whenever a marker with color 
k is encountered, the next uncompleted task in job k is scheduled in the earliest 
plausible timeslot. Since there are exactly M markers of each color, and since every 
job contains exactly M tasks, this decoding of U yields a complete schedule. Observe 
that since markers of the same color are interchangeable, many different ordering U 

will correspond to the same scheduling of tasks. 

To generate a neighbor of U in this algorithm, a marker Ui is selected uniformly at 
random and moved to a new position j chosen uniformly at random. To achieve 
this, it is necessary to shift the subsequence of markers between Ui and (J'j (including 
Uj) one position in the appropriate direction. Ifi < j, then Ui+1,Ui+2, ... ,(J'j are 
shifted one position to the left in u. If i > j, then (J'j, (J'j+l, ... ,Ui-1 are shifted one 
position to the right. (If i = j, then the generated neighbor is of course identical to 
u.) For an example, see the full version of this paper [10] . 

Fang et al. consider the makespan achieved after 300 iterations of their GVOT­
based GA on a population of size 500. We compare this with an SH for which each 
experiment involves 150,000 iterations. In both cases therefore, a single execution 
of the algorithm involves a total of 150,000 function evaluations. Fang et al. present 
their average results over 10 trials, but do not indicate how they obtain their "best". 
We present the statistics resulting from 100 executions of the SH algorithm. 

IIIOXIO Jobshop 
GA I SH 

II 20x5 Jobshop II 
Mean 977 966.96 1215 1202.40 
SD 13.15 12.92 
High 997 1288 
Low 949 938 1189 1173 
Best Known 930 1165 
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As can be seen from the above table, the performance of the SH algorithm appears 
to be as good as or superior to that of the GA. 

3.4 A New Jobshop GA 

In this section, we reconsider the jobshop problem in an attempt to formulate a 
new GA encoding. We use the same encoding as in the SH algorithm described 
above: (7 is an ordering (71, (72, •.. , (7 J M of the J M markers, which can be used to 
construct a schedule as before. We treated markers of the same color as effectively 
equivalent in the SH algorithm. Now, however, the label of a marker (a unique 
integer in {I, . . . ,J M}) will playa role. 

The basic step in the crossover operator for this GA as applied to a pair (7, T) 
of orderings is as follows. A label i is chosen uniformly at random from the 
set {I, 2, ... , J M}. In (7, the marker with label i is moved to the position oc­
cupied by i in T; conversely, the marker with label i in T is moved to the position 
occupied by that marker in (7. In both cases, the necessary shifting is performed 
as before. Hence the idea is to move a single marker in (7 (and in T) to a new po­
sition as in the SH algorithm; instead of moving the marker to a random position, 
though, we move it to the position occupied by that marker in T (and (7, respec­
tively). The full crossover operator picks two labels j ~ k uniformly at random 
from {I, 2, . .. , J M}, and performs this basic operation first for label j, then j + 1, 
and so forth, through k. The mutation operator in our GA performs exactly the 
same operation as that used to generate a neighbor in the SH algorithm. A marker 
(7 i is chosen uniformly at random and moved to a new position j, chosen uniformly 
at random. The usual shifting operation is then performed. Observe how closely 
the crossover and mutation operators in this GA for the jobshop problem are based 
on those in the corresponding SH algorithm. 

Our GA includes, in order, the following phases: evaluation, elitist replacement, 
selection, crossover, and mutation. In the evaluation phase, the fitnesses of all 
members of the population are computed. Elitist replacement substitutes the fittest 
permutation from the evaluation phase of the previous iteration for the least fit 
permutation in the current population (except, of course, in the first iteration, 
in which there is no replacement). Because of its simplicity and its effectiveness 
in practice, we chose to use binary stochastic tournament selection (see [8] for 
details). The crossover step in our GA selects f pairs uniformly at random without 
replacement from the population and applies the mating operator to each of these 
pairs independently with probability 0.6. The number of mutations performed on 
a given permutation in a single iteration is binomial with parameter p = *. The 
population in our GA is initialized by selecting every individual uniformly at random 
from Sn. 

We execute this GA for 300 iterations on a population of size 500. Results of 100 
experiments performed with this GA are indicated in the following table by "new 
GA". For comparison, we again give the results obtained by the GA of Fang et al. 
and the SH algorithm described in this paper. 

II IOxlO Jobshop 20x5 Jobshop II 
new GA GA SH new GA GA SH II 

Mean 956.22 977 965.64 1193.21 1215 1204.89 
SD 8.69 10.56 7.38 12.92 
High 976 996 1211 1241 
Low 937 949 949 1174 1189 1183 
Best Known 930 1165 
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4 Conclusion 

As black-box algorithms, GAs are principally of interest in solving problems whose 
combinatorial structure is not understood well enough for more direct, problem­
specific techniques to be applied. As we have seen in regard to the two problems 
presented in this paper, stochastic hill climbing can offer a useful gauge of the per­
formance of the GA. In some cases it shows that a GA-based approach may not 
be competitive with simpler methods; at others it offers insight into possible design 
decisions for the G A such as the choice of encoding and the formulation of mating 
and mutation operators. In light of the results presented in this paper, we hope that 
designers of black-box algorithms will be encouraged to experiment with stochastic 
hillclimbing in the initial stages of the development of their algorithms. 
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