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Abstract 

A new learning algorithm is developed for the design of statistical 
classifiers minimizing the rate of misclassification. The method, 
which is based on ideas from information theory and analogies to 
statistical physics, assigns data to classes in probability. The dis­
tributions are chosen to minimize the expected classification error 
while simultaneously enforcing the classifier's structure and a level 
of "randomness" measured by Shannon's entropy. Achievement of 
the classifier structure is quantified by an associated cost. The con­
strained optimization problem is equivalent to the minimization of 
a Helmholtz free energy, and the resulting optimization method 
is a basic extension of the deterministic annealing algorithm that 
explicitly enforces structural constraints on assignments while re­
ducing the entropy and expected cost with temperature. In the 
limit of low temperature, the error rate is minimized directly and a 
hard classifier with the requisite structure is obtained. This learn­
ing algorithm can be used to design a variety of classifier structures. 
The approach is compared with standard methods for radial basis 
function design and is demonstrated to substantially outperform 
other design methods on several benchmark examples, while of­
ten retaining design complexity comparable to, or only moderately 
greater than that of strict descent-based methods. 
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1 Introduction 

The problem of designing a statistical classifier to minimize the probability of mis­
classification or a more general risk measure has been a topic of continuing interest 
since the 1950s. Recently, with the increase in power of serial and parallel computing 
resources, a number of complex neural network classifier structures have been pro­
posed, along with associated learning algorithms to design them. While these struc­
tures offer great potential for classification, this potenl ial cannot be fully realized 
without effective learning procedures well-matched to the minimllm classification­
error oh.iective. Methods such as back propagation which approximate class targets 
in a sqllared error sense do not directly minimize the probability of error. Rather, 
it has been shown that these approaches design networks to approximate the class 
a posteriori probabilities. The probability estimates can then be used to form a de­
cision rule. While large networks can in principle accurately approximate the Bayes 
discriminant, in practice the network size must be constrained to avoid overfitting 
the (finite) training set. Thus, discriminative learning techniques, e.g. (Juang and 
Katagiri, 1992), which seek to directly minimize classification error may achieve 
better results. However, these methods may still be susceptible to finding shallow 
local minima far from the global minimum. 

As an alternative to strict descent-based procedures, we propose a new determinis­
tic learning algorithm for statistical classifier design with a demonstrated potential 
for avoiding local optima of the cost. Several deterministic, annealing-based tech­
niques have been proposed for avoiding nonglobal optima in computer vision and 
image processing (Yuille, 1990), (Geiger and Girosi,1991), in combinatorial opti­
mization, and elsewhere. Our approach is derived based on ideas from information 
theory and statistical physics, and builds on the probabilistic framework of the de­
terministic annealing (DA) approach to clustering and related problems (Rose et 
al., 1990,1992,1993). In the DA approach for data clustering, the probability dis­
tributions are chosen to minimize the expected clustering cost, given a constraint 
on the level of randomness, as measured by Shannon's entropy 1. 

In this work, the DA approach is extended in a novel way, most significantly to 
incorporate structural constraints on data assignments, but also to minimize the 
probability of error as the cost. While the general approach we suggest is likely 
applicable to problems of structured vector quantization and regression as well, we 
focus on the classification problem here. Most design methods have been developed 
for specific classifier structures. In this work, we will develop a general approach but 
only demonstrate results for RBF classifiers. The design of nearest prototype and 
MLP classifiers is considered in (Miller et al., 1995a,b). Our method provides sub­
stantial performance gains over conventional designs for all of these structures, while 
retaining design complexity in many cases comparable to the strict descent meth­
ods. Our approach often designs small networks to achieve training set performance 
that can only be obtained by a much larger network designed in a conventional way. 
The design of smaller networks may translate to superior performance outside the 
training set. 

INote that in (Rose et al., 1990,1992,1993), the DA method was formally derived using 
the maximum entropy principle. Here we emphasize the alternative, but mathematically 
equivalent description that the chosen distributions minimize the expected cost given con­
strained entropy. This formulation may have more intuitive appeal for the optimization 
problem at hand. 
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2 Classifier Design Formulation 

2.1 Problem Statement 

Let T = {(x,c)} be a training set of N labelled vectors, where x E 'Rn is a feature 
vector and c E I is its class label from an index set I. A classifier is a mapping 
C : 'Rn _ I, which assigns a class label in I to each vector in 'Rn. Typically, the 
classifier is represented by a set of model parameters A. The classifier specifies a 
partitioning of the feature space into regions Rj = {x E 'Rn : C(x) = j}, where 
U Rj = 'Rn and n Rj = 0. It also induces a partitioning of the training set into 
j j 

sets 7j C T, where 7j = {{x,c} : x E Rj,(x,c) E T}. A training pair (x,c) E T 
is misc1assified if C(x) "# c. The performance measure of primary interest is the 
empirical error fraction Pe of the classifier, i.e. the fraction of the training set (for 
generalization purposes, the fraction of the test set) which is misclassified: 

Pe = 2. L 6(c,C(x» = ~L L 6(c,j), (1) 
N (X,c)ET jEI (X,C)ETj 

where 6( c, j) = 1 if c "# j and 0 otherwise. In this work, we will assume that the 
classifier produces an output Fj(x) associated with each class, and uses a "winner­
take-all" classification fll Ie: 

R j == {x E'Rn : Fj (x) ~ Fk(X) "Ik E I}. (2) 
This rule is consistent with MLP and RBF-based classification. 

2.2 Randomized Classifier Partition 

As in the original DA approach for clustering (Rose et aI., 1990,1992), we cast 
the optimization problem in a framework in which data are assigned to classes 
in probability. Accordingly, we define the probabilities of association between a 
feature x and the class regions, i.e. {P[x E R j ]}. As our design method, which 
optimizes over these probabilities, must ultimately form a classifier that makes 
"hard" decisions based on a specified network model, the distributions must be 
chosen to be consistent with the decision rule of the model. In other words, we 
need to introduce randomness into the classifier's partition. Clearly, there are many 
ways one could define probability distributions which are consistent with the hard 
partition at some limit. We use an information-theoretic approach. We measure the 
randomness or uncertainty by Shannon's entropy, and determine the distribution 
for a given level of entropy. At the limit of zero entropy we should recover a hard 
partition. For now, suppose that the values of the model parameters A have been 
fixed. We can then write an objective function whose maximization determines the 
hard partition for a given A: 

1 
Fh = N ~ L Fj(x). (3) 

JEI (X,c)ETj 

Note specifically that maximizing (3) over all possible partitions captures the deci­
sion rule of (2). The probabilistic generalization of (3) is 

1 
F = N L LP[x E Rj]Fj(x), (4) 

(X,c)ET j 

where the (randomized) partition is now represented by association probabilities, 
and the corresponding entropy is 

1 
H = - N L LP[x E Rj)logP[x E Rj). (5) 

(X,c)ET j 
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We determine the distribution at a given level of randomness as the one which 
maximizes F while maintaining H at a prescribed level iI: 

max F subject to H = iI. 
{P[XERj]} 

(6) 

The result is the best probabilistic partition, in the sense of F, at the specified level 
of randomness. For iI = 0 we get back the hard partition maximizing (3). At any 
iI, the solution of(6) is the Gibbs distribution 

e'YFj(X) 

P[x E Rj] == Pjl~(A) = E e'YF" (X) , 

k 

(7) 

where 'Y is the Lagrange multiplier. For 'Y --t 0, the associations become increas­
ingly uniform, while for 'Y --t 00, they revert to hard classifications, equivalent to 
application of the rule in (2). Note that the probabilities depend on A through the 
network outputs. Here we have emphasized this dependence through our choice of 
concise notation. 

2.3 Information-Theoretic Classifier Design 

Until now we have formulated a controlled way of introducing randomness into 
the classifier's partition while enforcing its structural constraint. However, the 
derivation assumed that the model parameters were given, and thus produced only 
the form of the distribution Pjl~(A), without actually prescribing how to choose the 
valw's of its parameter set. Moreover the derivation did not consider the ultimate 
goal of minimizing the probability of error. Here we remedy both shortcomings. 

The method we suggest gradually enforces formation of a hard classifier minimizing 
the probability of error. We start with a highly random classifier and a high expected 
misclassification cost. We then gradually reduce both the randomness and the cost 
in a deterministic learning process which enforces formation of a hard classifier 
with the requisite structure. As before, we need to introduce randomness into the 
partition while enforcing the classifier's structure, only now we are also interested 
in minimizing the expected misclassification cost. While satisfying these multiple 
objectives may appear to be a formidable task, the problem is greatly simplified by 
restricting the choice of random classifiers to the set of distributions {Pjl~(A)} as 
given in (7) - these random classifiers naturally enforce the structural constraint 
through 'Y. Thus, from the parametrized set {Pjl~(A)}, we seek that distribution 
which minimizes the average misclassification cost while constraining the entropy: 

(8) 

subject to 

The solution yields the best random classifier in the sense of minimum < Pe > for a 
given iI. At the limit of zero entropy, we should get the best hard classifier in the 
sense of Pe with the desired structure, i.e. satisfying (2). 

The constrained minimization (8) is equivalent to the unconstrained minimization 
of the Lagrangian: 

min L == minfj < Pe > -H, 
A,'Y A,'Y 

(9) 
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where {3 is the Lagrange multiplier associated with (8). For {3 = 0, the sole objec­
tive is entropy maximization, which is achie\"ed by the uniform distribution. This 
solution, which is the global minimum for L at {3 = 0, can be obtained by choos­
ing , = O. At the other end of the spectrum, for {3 - 00, the sole objective is 
to minimize < Pe >, and is achieved by choosing a non-random (hard) classifier 
(hence minimizing Pe ). The hard solution satisfies the classification rule (2) and is 
obtained for , - 00. 

Motivation for minimizing the Lagrangian can be obtained from a physical per­
spective by noting that L is the Helmholtz free energy of a simulated system, with 
< Pe > the "energy", H the system entropy, and ~ the "temperature". Thus, from 
this physical view we can suggest a deterministic annealing (DA) process which 
involves minimizing L starting at the global minimum for {3 = 0 (high temperature) 
and tracking the solution while increasing {3 towards infinity (zero temperature). 
In this way, we obtain a sequence of solutions of decreasing entropy and average 
misclassification cost . Each such solution is the best random classifier in the sense 
of < Pe > for a given level of randomness. The annealing process is useful for 
avoiding local optima of the cost < Pe >, and minimizes < Pe > directly at low 
temperature . While this annealing process ostensibly involves the quantities Hand 
< Pe >, the restriction to {PjIAA)} from (7) ensures that the process also enforces 
the structural constraint on the classifier in a controlled way. Note in particular 
that, has not lost its interpretation as a Lagrange multiplier determining F. Thus, 
, = 0 means that F is unconstrained - we are free to choose the uniform distribu­
tion . Similarly, sending, - 00 requires maximizing F - hence the hard solution. 
Since, is chosen to minimize L, this parameter effectively determines the level of 
F - the level of structural constraint - consistent with Hand < Pe > for a given 
{3. As {3 is increased, the entropy constraint is relaxed, allowing greater satisfaction 
of both the minimum < Pe > and maximum F objectives. Thus, annealing in {3 
gradually enforces both the structural constraint (via ,) and the minimum < Pe > 
objective 2. 

Our formulation clearly identifies what distinguishes the annealing approach from 
direct descent procedures. Note that a descent method could be obtained by simply 
neglecting the constraint on the entropy, instead choosing to directly minimize < 
Pe > over the parameter set. This minimization will directly lead to a hard classifier, 
and is akin to the method described in (Juang and Katagiri, 1992) as well as other 
related approaches which attempt to directly minimize a smoothed probability of 
error cost. However, as we will experimentally verify through simulations, our 
annealing approach outperforms design based on directly minimizing < Pe >. 
For conciseness, we will not derive necessary optimality conditions for minimizing 
the Lagrangian at a give temperature, nor will we specialize the formulation for 
individual classification structures here. The reader is referred to (Miller et al., 
1995a) for these details. 

3 Experimental Comparisons 

We demonstrate the performance of our design approach in comparison with other 
methods for the normalized RBF structure (Moody and Darken, 1989). For the DA 
method, steepest descent was used to minimize L at a sequence of exponentially 
increasing {3, given by (3(n + 1) = a:{3(n) , for a: between 1.05 and 1.1. We have 
found that much of the optimization occurs at or near a critical temperature in the 

2While not shown here, the method does converge directly for f3 - 00, and at this limit 
enforces the classifier's structure. 
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Method DA TR-RHF MU-ltBJ<' \jPe 

M 4 30 4 10 30 50 10 50 10 
Pe (tram) 0.11 0.028 0.33 0.162 0.145 0.129 0.3 0.19 0.18 
Pe (test) 0.13 0.167 0.35 0.165 0.168 0.179 0.37 0.18 0.20 

Table 1: A comparison of DA with known design techniques for RBF classification 
on the 40-dimensional noisy waveform data from (Breiman et al., 1980). 

solution process. Beyond this critical temperature, the annealing process can often 
be "quenched" to zero temperature by sending I ---+ 00 without incurring significant 
performance loss. Quenching the process often makes the design complexity of our 
method comparable to that of descent-based methods such as back propagation or 
gradient descent on < Pe >. 
We have compared our RBF design approach with the mf,thod in (Moody 
and Darken, 1989) (MD-RBF), with a method described ill (Tarassenko and 
Roberts,1994) (TR-RBF), with the approach in (Musavi et al., 1992), and with 
steepest descent on < Pe > (G-RBF). MD-RBF combines unsupervised learning 
of receptive field parameters with supervis,'d learning of the weights from the re­
ceptive fields so as to minimize the squared distance to target class outputs. The 
primary advantage of this approach is its modest design complexity. However, the 
recept i\"c fields are not optimized in a supervised fashion, which can cause perfor­
mance degradation. TR-RBF optimizes all of the RBF parameters to approximate 
target class outputs. This design is more complex than MD-RBF and achieves bet­
ter performance for a given model size. However, as aforementioned, the TR-RBF 
design objective is not equivalent to minimizing Pe , but rather to approximating 
the Bayes-optimal discriminant. While direct descent on < Pe > may minimize 
the "right" objective, problems of local optima may be quite severe. In fact, we 
have found that the performance of all of these methods can be quite poor without 
a judicious initialization. For all of these methods, we have employed the unsu­
pervised learning phase described in (Moody and Darken, 1989) (based on Isodata 
clustering and variance estimation) as model initialization. Then, steepest descent 
was performed on the respective cost surface. We have found that the complexity 
of our design is typically 1-5 times that of TR-RB F or G-RBF (though occasionally 
our design is actually faster than G-RBF). Accordingly, we have chosen the best 
results based on five random initializations for these techniques, and compared with 
the single DA design run. 

One example reported here is the 40D "noisy" waveform data used in (Breiman et 
al., 1980) (obtained from the DC-Irvine machine learning database repository.). We 
split the 5000 vectors into equal size training and test sets. Our results in Table 
I demonstrate quite substantial performance gains over all the other methods, and 
performance quite close to the estimated Bayes rate of 14%. Note in particular 
that the other methods perform quite poorly for a small number of receptive fields 
(M), and need to increase M to achieve training set performance comparable to 
our approach. However, performance on the test set does not necessarily improve, 
and may degrade for increasing M. 

To further justify this claim, we compared our design with results reported in 
(Musavi et al., 1992), for the two and eight dimensional mixture examples. For 
the 2D example, our method achieved Petro-in = 6.0% for a 400 point training set 
and Pe, •• , = 6.1% on a 20,000 point test set, using M = 3 units (These results 
are near-optimal, based on the Bayes rate.). By contrast, the method of Musavi et 
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al. used 86 receptive fields and achieved P et •• t = 9.26%. For the 8D example and 
M = 5, our method achieved Petr,.;n = 8% and Pet •• t = 9.4% (again near-optimal), 
while the method in (Musavui et al., 1992) achieved Pet•5t = 12.0% using M = 128. 

In summary, we have proposed a new, information-theoretic learning algorithm for 
classifier design, demonstrated to outperform other design methods, and with gen­
eral applicability to a variety of structures. Future work may investigate important 
applications, such as recognition problems for speech and images. Moreover, our 
extension of DA to incorporate structure is likely applicable to structured vector 
quantizer design and to regression modelling. These problems will be considered in 
future work. 
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