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Abstract 

"Family discovery" is the task of learning the dimension and struc­
ture of a parameterized family of stochastic models. It is espe­
cially appropriate when the training examples are partitioned into 
"episodes" of samples drawn from a single parameter value. We 
present three family discovery algorithms based on surface learn­
ing and show that they significantly improve performance over two 
alternatives on a parameterized classification task. 

1 INTRODUCTION 

Human listeners improve their ability to recognize speech by identifying the accent 
of the speaker. "Might" in an American accent is similar to "mate" in an Australian 
accent. By first identifying the accent, discrimination between these two words is 
improved. We can imagine locating a speaker in a "space of accents" parameterized 
by features like pitch, vowel formants, "r" -strength, etc. This paper considers the 
task of learning such parameterized models from data. 

Most speech recognition systems train hidden Markov models on labelled speech 
data. Speaker-dependent systems train on speech from a single speaker. Speaker­
independent systems are usually similar, but are trained on speech from many 
different speakers in the hope that they will then recognize them all. This kind of 
training ignores speaker identity and is likely to result in confusion between pairs of 
words which are given the same pronunciation by speakers with different accents. 

Speaker-independent recognition systems could more closely mimic the human ap­
proach by using a learning paradigm we call "family discovery". The system would 
be trained on speech data partitioned into "episodes" for each speaker. From this 
data, the system would construct a parameterized family of models representing dif-
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Figure 1: The structure of the three family discovery algorithms. 

ferent accents. The learning algorithms presented in this paper could determine the 
dimension and structure of the parameterization. Given a sample of new speech, 
the best-fitting accent model would be used for recognition. 

The same paradigm applies to many other recognition tasks. For example, an OCR 
system could learn a parameterized family of font models (Revow, et. al., 1994). 
Given new text, the system would identify the document's font parameters and use 
the corresponding character recognizer. 

In general, we use "family discovery" to refer to the task of learning the dimension 
and structure of a parameterized family of stochastic models. The methods we 
present are equally applicable to parameterized density estimation, classification, 
regression, manifold learning, reinforcement learning, clustering, stochastic gram­
mar learning, and other stochastic settings. Here we only discuss classification and 
primarily consider training examples which are explicitly partitioned into episodes. 

This approach fits naturally into the neural network literature on "meta-learning" 
(Schmidhuber, 1995) and "network transfer" (Pratt, 1994). It may also be consid­
ered as a particular case of the "bias learning" framework proposed by Baxter at 
this conference (Baxter, 1996). 

There are two primary alternatives to family discovery: 1) try to fit a single model 
to the data from all episodes or 2) use separate models for each episode. The first 
approach ignores the information that the different training sets came from distinct 
models. The second approach eliminates the possibility of inductive generalization 
from one set to another. 

In Section 2, we present three algorithms for family discovery based on techniques 
for "surface learning" (Bregler and Omohundro, 1994 and 1995). As shown in Figure 
1, the three alternative representations of the family are: 1) a single affine subspace 
of the parameter space, 2) a set of local affine patches smoothly blended together, 
and 3) a pair of coupled maps from the parameter space into the model space and 
back. In Section 3, we compare these three approaches to the two alternatives on a 
parameterized classification task. 
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2 THE FIVE ALGORITHMS 

Let the space of all classifiers under consideration be parameterized by 0 and assume 
that different values of 0 correspond to different classifiers (ie. it is identifiable). For 
example, 0 might represent the means, covariances, and class priors of a classifier 
with normal class-conditional densities. O-space will typically have a much higher 
dimension than the parameterized family we are seeking. We write P9(X) for the 
total probability that the classifier 0 assigns to a labelled or unlabelled example x. 

The true models are drawn from a d-dimensional family parameterized by , . Let the 
training set be partitioned into N episodes where episode i consists of Ni training 
examples tij, 1 :S j :S Ni drawn from a single underlying model with parameter 
0:. A family discovery learning algorithm uses this training data to estimate the 
underlying parameterized family. 

From a parameterized family, we may define the projection operator P from O-space 
to itself which takes each 0 to the closest member of the family. Using this projection 
operator, we may define a "family prior" on O-space which dies off exponentially 
with the square distance of a model from the family mp(O) ex e-(9-P(9))2. Each 
of the family discovery algorithms chooses a family so as to maximize the posterior 
probability of the training data with respect to this prior. If the data is very 
sparse, this MAP approximation to a full Bayesian solution can be supplemented 
by "Occam" terms (MacKay, 1995) or by using a Monte Carlo approximation. 

The outer loop of each of the algorithms performs the optimization of the fit of the 
data by re-estimation in a manner similar to the Expectation Maximization (EM) 
approach (Jordan and Jacobs, 1994). First, the training data in each episode i is 
independently fit by a model Oi. Then the dimension of the family is determined 
as described later and the family projection operator P is chosen to maximize the 
probability that the episode models Oi came from that family ni mp(Oi). The 
episode models Oi are then re-estimated including the new prior probability mp. 
These newly re-estimated models are influenced by the other episodes through mp 
and so exhibit training set "transfer". The re-estimation loop is repeated until 
nothing changes. 

The learned family can then be used to classify a set of Ntest unlabelled test exam­
ples Xk, 1 :S k :S Ntest drawn from a model O;est in the family. First, the parameter 
Otest is estimated by selecting the member of the family with the highest likelihood 
on the test samples. This model is then used to perform the classification. A good 
approximation to the best-fit family member is often to take the image of the best-fit 
model in the entire O-space under the projection operator P. 

In the next five sections, we describe the two alternative approaches and the three 
family discovery algorithms. They differ only in their choice of family representation 
as encoded in the projection operator P. 

2.1 The Single Model Approach 

The first alternative approach is to train a single model on all of the training data. 
It selects 0 to maximize the total likelihood L( 0) = n~l n~l P9 (tij ). New test 
data is classified by this single selected model. 
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2.2 The Separate Models Approach 

The second alternative approach fits separate models for each training }£isode. It 
chooses Bi for 1::; i::; N to maximize the episode likelihood Li(Bi) = TIj~IPIJ(tij). 
Given new test data, it determines which of the individual models Bi fit best and 
classifies the data with it. 

2.3 The Affine Algorithm 

The affine model represents the underlying model family as an affine subspace of 
the model parameter space. The projection operator Pal line projects a parameter 
vector B orthogonally onto the affine subspace. The subspace is determined by 
selecting the top principal vectors in a principal components analysis of the best­
fit episode model parameters. As described in (Bregler & Omohundro, 1994) the 
dimension is chosen by looking for a gap in the principal values. 

2.4 The Affine Patch Algorithm 

The second family discovery algorithm is based on the "surface learning" proce­
dure described in (Bregler and Omohundro, 1994). The family is represented by 
a collection of local affine patches which are blended together using Gaussian in­
fluence functions. The projection mapping Ppatch is a smooth convex combination 
of projections onto the affine patches Ppatch(B) = 2::=1 10: (B)Ao: (B) where Ao: is 

the projection operator for an affine patch and Io:(B) = E:"J:)(IJ) is a normalized 

Gaussian blending function. 

The patches are initialized using k-means clustering on the episode models to choose 
k patch centers. A local principal components analysis is performed on the episode 
models which are closest to each center. The family dimension is determined by 
examining how the principal values scale as successive nearest neighbors are consid­
ered. Each patch may be thought of as a "pancake" lying in the surface. Dimensions 
which belong to the surface grow quickly as more neighbors are considered while 
dimensions across the surface grow only because of the curvature of the surface. 

The Gaussian influence functions and the affine patches are then updated by the 
EM algorithm (Jordan and Jacobs, 1994). With the affine patches held fixed, the 
Gaussians Go: are refit to the errors each patch makes in approximating the episode 
models. Then with the Gaussians held fixed, the affine patches Ao: are refit to the 
epsiode models weighted by the the corresponding Gaussian Go:. Similar patches 
may be merged together to form a more parsimonious model. 

2.5 The Coupled Map Algorithm 

The affine patch approach has the virtue that it can represent topologically complex 
families (eg. families representing physical objects might naturally be parameterized 
by the rotation group which is topologically a projective plane). It cannot, however, 
provide an explicit parameterization of the family which is useful in some applica­
tions (eg. optimization searches). The third family discovery algorithm therefore 
attempts to directly learn a parameterization of the model family. 

Recall that the model parameters define B-space, while the family parameters de-
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fine 'Y-space. We represent a family by a mapping G from B-space to 'Y-space to­
gether with a mapping F from 'Y-space back to B-space. The projection operation 
is Pmap(B) = F(G(B)). The map G(O) defines the family parameter l' on the full 
O-space. 

This representation is similar to an "auto-associator" network in which we attempt 
to "encode" the best-fit episode parameters Oi in the lower dimensional 'Y-space 
by the mapping G in such a way that they can be correctly reconstructed by the 
function F. Unfortunately, if we try to train F and G using back-propagation on 
the identity error function, we get no training data away from the family. There is 
no reason for G to project points away from the family to the closest family member. 
We can rectify this by training F and G iteratively. First an arbitrary G is chosen 
and F is trained to send the images 'Yi = G(Oi) back to 0i' G is trained, however, 
on images under F corrupted by additive spherical Gaussian noise! This provides 
samples away from the family and on average the training signal sends each point 
in B space to the closest family member. 

To avoid iterative training, our experiments used a simpler approach. G was taken to 
be the affine projection operator defined by a global principal components analysis 
of the best-fit episode model parameters. Once G is defined, F is chosen to minimize 
the difference between F(G(Oi)) and Oi for each best-fit episode parameter Oi. 

Any form of trainable nonlinear mapping could be used for F (eg. backprop neural 
networks or radial basis function networks). We represent F as a mixture of experts 
(Jordan and Jacobs, 1994) where each expert is an affine mapping and the mixture 
coefficients are Gaussians. The mapping is trained by the EM algorithm. 

3 ALGORITHM COMPARISON 

To compare these five algorithms, we consider a two-class classification task with 
unit-variance normal class-conditional distributions on a 5-dimensional feature 
space. The means of the class distributions are parameterized by a nonlinear two­
parameter family: 

ml = (1'1 + ~cos¢»e~1 + ('Y2 + ~sin¢»e~2 
m2 = ('Yl - ~ cos ¢> ) e~1 + ('Y2 - ~ sin ¢> ) l2 . 

where 0 ~ 1'1, 1'2 ~ 10 and ¢> = ('Yl + 1'2)/3. The class means are kept at a unit 
distance apart, ensuring significant class overlap over the whole family. The angle 
¢> varies with the parameters so that the correct classification boundary changes 
orientation over the family. This choice of parameters introduces sufficient non­
linearity in the task to distinguish the non-linear algorithms from the linear one. 

Figure 1 shows the comparative performance of the 5 algorithms. The x-axis is the 
total number of training examples. Each set of examples consisted of approximately 
N = ..;x episodes of approximately Ni = ..;x examples each. The classifier param­
eters for an episode were drawn uniformly from the classifier family. The episode 
training examples were then sampled from the chosen classifier according to the 
classifier's distribution. Each of the 5 algorithms was then trained on these exam­
ples. The number of patches in the surface patch algorithm and the number of affine 
components in the surface map algorithm were both taken to be the square-root of 
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Figure 2: A comparison of the 5 family discovery algorithms on the classification 
task. 

the number of training episodes. 

The y-axis shows the percentage correct for each algorithm on an independent test 
set. Each test set consisted of 50 episodes of 50 examples each. The algorithms 
were presented with unlabelled data and their classification predictions were then 
compared with the correct classification label. 

The results show significant improvement through the use of family discovery for 
this classification task. The single model approach performed significantly worse 
than any of the other approaches, especially for larger numbers of episodes (where 
the family discovery becomes possible). The separate model approach improves with 
the number of episodes, but is nearly always bested by the approaches which take 
explicit account of the underlying parameterized family. Because of the nonlinearity 
in this task, the simple affine model performs more poorly than the two nonlinear 
methods. It is simple to implement, however, and may well be the method of choice 
when the parameters aren 't so nonlinear. From this data, there is not a clear winner 
between the surface patch and surface map approaches. 

4 TRAINING SET DISCOVERY 

Throughout this paper, we have assumed that the training set was partitioned into 
episodes by the teacher. Agents interacting with the world may not be given this 
explicit information. For example, a speech recognition system may not be told 
when it is conversing with a new speaker. Similarly, a character recognition system 
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would probably not be given explicit information about font changes. Learners can 
sometimes use the data itself to detect these changes, however. In many situations 
there is a strong prior that successive events are likely to have come from a single 
model with only occasional model changes. The EM algorithm is often used for 
segmenting unlabelled speech. It may be used in a similar manner to find the 
training set episode boundaries. First, a clustering algorithm is used to partition 
the training examples into episodes. A parameterized family is then fit to these 
episodes. The data is then repartitioned according to the similarity of the induced 
family parameters and the process is repeated until it converges. A similar approach 
may be applied when the model parameters vary slowly with time rather than 
occasionally jumping discontinously. 
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