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A neural network model of 3-D lightness perception is presented 
which builds upon the FACADE Theory Boundary Contour Sys­
tem/Feature Contour System of Grossberg and colleagues. Early 
ratio encoding by retinal ganglion neurons as well as psychophysi­
cal results on constancy across different backgrounds (background 
constancy) are used to provide functional constraints to the theory 
and suggest a contrast negation hypothesis which states that ratio 
measures between coplanar regions are given more weight in the 
determination of lightness of the respective regions. Simulations 
of the model address data on lightness perception, including the 
coplanar ratio hypothesis, the Benary cross, and White's illusion. 

1 INTRODUCTION 

Our everyday visual experience includes surface color constancy. That is, despite 1) 
variations in scene lighting and 2) movement or displacement across visual contexts, 
the color of an object appears to a large extent to be the same. Color constancy 
refers, then, to the fact that surface color remains largely constant despite changes 
in the intensity and composition of the light reflected to the eyes from both the 
object itself and from surrounding objects. This paper discusses a neural network 
model of 3D lightness perception - i.e., only the achromatic or black to white 
dimension of surface color perception is addressed. More specifically, the problem 
of background constancy (see 2 above) is addressed and mechanisms to accomplish 
it in a system exhibiting illumination constancy (see 1 above) are proposed. 

A landmark result in the study of lightness was an experiment reported by Wal­
lach (1948) who showed that for a disk-annulus pattern, lightness is given by the 
ratio of disk and annulus luminances (i.e., independent of overall illumination); the 



A Neural Network Model of 3-D Lightness Perception 845 

so-called ratio principle. In another study, Whittle and Challands (1969) had sub­
jects perform brightness matches in a haploscopic display paradigm. A striking 
result was that subjects always matched decrements to decrements , or increments 
to increments, but never increments to decrements. Whittle and Challands' (1969) 
results provide psychophysical support to the notion that the early visual system 
codes luminance ratios and not absolute luminance. These psychophysical results 
are in line with results from neurophysiology indicating that cells at early stages 
of the visual system encode local luminance contrast (Shapley and Enroth-Cugell, 
1984). Note that lateral inhibition mechanisms are sensitive to local ratios and can 
be used as part of the explanation of illumination constancy. 

Despite the explanatory power of the ratio principle, and the fact that the early 
stages of the visual system likely code contrast, several experiments have shown that, 
in general, ratios are insufficient to account for surface color perception. Studies 
of background constancy (Whittle and Challands, 1969; Land and McCann, 1971; 
Arend and Spehar, 1993), of the role of 3-D spatial layout and illumination arrange­
ment on lightness perception (e.g. , Gilchrist, 1977) as well as many other effects, 
argue against the sufficiency of local contrast measures (e.g., Benary cross, White 's , 
1979 illusion). The neural network model presented here addresses these data using 
several fields of neurally plausible mechanisms of lateral inhibition and excitation. 

2 FROM LUMINANCE RATIOS TO LIGHTNESS 

The coplanar ratio hypothesis (Gilchrist, 1977) states that the lightness of a given 
region is determined predominantly in relation to other coplanar surfaces, and not 
by equally weighted relations to all retinally adjacent regions. We propose that in 
the determination of lightness, contrast measures between non-coplanar adjacent 
surfaces are partially negated in order to preserve background constancy. 

Consider the Benary Cross pattern (input stimulus in Fig. 2). If the gray patch on 
the cross is considered to be at the same depth as the cross , while the other gray 
patch is taken to be at the same depth as the background (which is below the cross), 
the gray patch on the cross should look lighter (since its lightness is determined 
in relation to the black cross), and the other patch darker (since its lightness is 
determined in relation to the white background) . White's (1979) illusion can be 
discussed in similar terms (see the input stimulus in Fig. 3). 

The mechanisms presented below implement a process of partial contrast negation in 
which the initial retinal contrast code is modulated by depth information such that 
the retinal contrast consistent with the depth interpretation is maintained while the 
retinal contrast not supported by depth is negated or attenuated. 

3 A FILLING-IN MODEL OF 3-D LIGHTNESS 

Contrast/Filling-in models propose that initial measures of boundary contrast fol­
lowed by spreading of neural activity within filling-in compartments produce a re­
sponse profile isomorphic with the percept (Gerrits & Vendrik, 1970; Cohen & 
Grossberg, 1984; Grossberg & Todorovic, 1988; Pessoa, Mingolla, & Neumann, 
1995). In this paper we develop a neural network model of lightness perception in 
the tradition of contrast/filling-in theories. The neural network developed here is an 
extension of the Boundary Contour System/Feature Contour System (BCS/FCS) 
proposed by Cohen and Grossberg (1984) and Grossberg and Mingolla (1985) to 
explain 3-D lightness data. 
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A fundamental idea of the BCS/FCS theory is that lateral inhibition achieves illumi­
nation constancy but requires the recovery of lightness by the filling-in, or diffusion , 
of featural quality ("lightness" in our case) . The final diffused activities correspond 
to lightness, which is the outcome of interactions between boundaries and featural 
quality, whereby boundaries control the process of filling-in by forming gates of 
variable resistance to diffusion . 

H ow can the visual system construct 3-D lightness percepts from contrast measures 
obtained by retinotopic lateral inhibition? A mechanism that is easily instantiated in 
a neural model and provides a straightforward modification to the contrast/filling­
in proposal of Grossberg and Todorovic (1988) is the use of depth-gated filling-in. 
This can be accomplished through a pathway that modulates boundary strength 
for boundaries between surfaces or objects across depth. The use of permeable 
or "leaky" boundaries was also used by Grossberg and Todorovic (1988) for 2-D 
stimuli. In the current usage, permeability is actively increased at depth boundaries 
to partially negate the contrast effect - since filling-in proceeds more freely - and 
thus preserve lightness constancy across backgrounds. Figure 1 describes the four 
computational stages of the system. 

I BOUNDARIES 

,...---------, ~ 
~ ON/OFF 
~- FILTERING j 

~ I RLLlNG-IN I 
Figure 1: Model components. 

I 
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Stage 1: Contrast Measurement. At this stage both ON and OFF neural fields 
with lateral inhibitory connectivity measure the strength of contrast at image re­
gions - in uniform regions a contrast measurement of zero results . Formally, the 
ON field is given by 

dyi; _ + + ) + (+ ) + dt - -aYij + ((3 - Yij Cij - Yij + 'Y Eij (1) 

where a , (3 and 'Yare constants; ct is the total excitatory input to yi; and Et; is the 

total inhibitory input to yi; . These terms denote discrete convolutions of the input 
Iij with Gaussian weighting functions, or kernels. An analogous equation specifies 
Yi; for the OFF field . Figure 2 shows the ON-contrast minus the OFF-contrast. 

Stage 2: 2-D Boundary Detection. At Stage 2, oriented odd-symmetric bound­
ary detection cells are excited by the oriented sampling of the ON and OFF Stage 1 
cells. Responses are maximal when ON activation is strong on one side of a cell's 
receptive field and OFF activation is strong on the opposite side. In other words, 
the cells are tuned to ON/OFF contrast co-occurrence, or juxtaposition (see Pessoa 
et aI., 1995). The output at this stage is the sum of the activations of such cells at 
each location for all orientations. The output responses are sharpened and localized 
through lateral inhibition across space; an equation similar to Equation 1 is used . 
The final output of Stage 2 is given by the signals Zij (see Fig. 2, Boundaries). 

Stage 3: Depth Map. In the current implementation a simple scheme was em­
ployed for the determination of the depth configuration. Initially, four types of 
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T-junction cells detect such configurations in the image. For example, 

Iij = Zi-d ,j x Zi+d,j x Zi ,j+d, (2) 

where d is a constant, detects T-junctions, where left , right, and top positions of the 
boundary stage are active; similar cells detect T-junctions of different orientations. 
The activities of the T-junction cells are then used in conjunction with boundary 
signals to define complete boundaries. Filling-in within these depth boundaries 
results in a depth map (see Fig. 2, Depth Map). 

Stage 4: Depth-modulated Filling-in . In Stage 4, the ON and OFF contrast 
measures are allowed to diffuse across space within respective filling-in regions . Dif­
fusion is blocked by boundary activations from Stage 2 (see Grossberg & Todorovic, 
1988, for details). The diffusion process is further modulated by depth information. 
The depth map provides this information; different activities code different depths . 
In a full blown implementation of the model, depth information would be obtained 
by the depth segmentation of the image supported by both binocular disparity and 
monocular depth cues. 

Depth-modulated filling-in is such that boundaries across depths are reduced in 
strength. This allows a small percentage of the contrast on either side ofthe bound­
ary to leak across it resulting in partial contrast negation, or reduction, at these 
boundaries. ON and OFF filling-in domains are used which receive the corresponding 
ON and OFF contrast activities from Stage 1 as inputs (see Fig. 2, Filled-in). 

4 SIMULATIONS 

The present model can account for several important phenomena, including 2 - D 
effects of lightness constancy and contrast (see Grossberg and Todorovic, 1988). 
The simulations that follow address 3 -D lightness effects. 

4.1 Benary Cross 

Figure 2 shows the simulation for the Benary Cross . The plotted gray level values 
for filling-in reflect the activities of the ON filling-in domain minus the OFF domain. 
The model correctly predicts that the patch on the cross appears lighter than the 
patch on the background. This result is a direct consequence of contrast negation. 
The depth relationships are such that the patch on the cross is at the same depth as 
the cross and the patch on the background is at the same depth as the background 
(see Fig. 2, Depth Map) . Therefore, the ratio of the background to the patch on 
the cross (across a depth boundary) and the ratio of the cross to the patch on 
the background (also across a depth boundary), are given a smaller weight in the 
lightness computation. Thus, the background will have a stronger effect on the 
appearance of the patch on the background, which will appear darker. At the same 
time, the cross will have a greater effect on the appearance of the patch on the 
cross , which will appear lighter. 

4.2 White's lllusion 

White 's (1979) illusion (Fig. 3) is such that the gray patches on the black stripes 
appear lighter than the gray patches on the white stripes. This effect is considered 
a puzzling violation of simultaneous contrast since the contour length of the gray 
patches is larger for the stripes they do not lie on . Simultaneous contrast would 
predict that the gray patches on the black stripes appear lighter than the ones on 
white. 
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Figure 2: Benary Cross. The filled-in values of the gray patch on the cross are higher 
than the ones for the gray patch on the background. Gray levels code intensity; 
darker grays code lower values, lighter grays code higher values. 

Figure 3 shows the result of the model for White's effect . The T-junction infor­
mation in the stimulus determines that the gray patches are coplanar with the 
patches they lie on. Therefore, their appearance will be determined in relation to 
the contrast of their respective backgrounds. This is obtained, again, through con­
trast modulation, where the contrast of, say, the gray patch on a black stripe is 
preserved, while the contrast of the same patch with the white is partially negated 
(due to the depth arrangement). 

4.3 Coplanar Hypothesis 

Gilchrist (1977) showed that the perception of lightness is not determined by retinal 
adjacency, and that depth configuration and spatial layout help specify lightness. 
More specifically, it was proposed that the ratio of coplanar surfaces, not necessarily 
retinally adjacent, determines lightness, the so-called coplanar ratio hypothesis. 
Gilchrist was able to convincingly demonstrate this by comparing the perception of 
lightness in two equivalent displays (in terms of luminance values), aside from the 
perceived depth relationships in the displays. 

Figure 4 shows computer simulations of the coplanar ratio effect. The same stimulus 
is given as input in two simulations with different depth specifications. In one 
(Depth Map 1), the depth map specifies that the rightmost patch is at a different 
depth than the two leftmost patches which are coplanar. In the other (Depth Map 
2), the two rightmost patches are coplanar and at a different depth than the leftmost 
patch. In all, the depth organization alters the lightness of the central region, which 
should appear darker in the configuration of Depth Map 1 than the one for Depth 
Map 2. For Depth Map 1, since the middle patch is coplanar with a white patch, this 
patch is darkened by simultaneous contrast. For Depth Map 2, the middle patch 
will be lightened by contrast since it is coplanar with a black patch. It should be 
noted that the depth maps for the simulations shown in Fig . 4 were given as input. 
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Figure 3: White's effect . The filled-in values of the gray patches on the black stripes 
are higher than the ones for the gray patches on white stripes. 

The current implementation cannot recover depth trough binocular disparity and 
only employs monocular cues as in the previous simulations. 

5 CONCLUSIONS 

In this paper, data from experiments on lightness perception were used to extend 
the BCSjFCS theory of Grossberg and colleagues to account for several challenging 
phenomena. The model is an initial step towards providing an account that can 
take into consideration the complex factors involved in 3-D vision - see Grossberg 
(1994) for a comprehensive account of 3-D vision. 
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