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Abstract 

There is currently considerable interest in developing general non­
linear density models based on latent, or hidden, variables. Such 
models have the ability to discover the presence of a relatively small 
number of underlying 'causes' which, acting in combination, give 
rise to the apparent complexity of the observed data set. Unfortu­
nately, to train such models generally requires large computational 
effort. In this paper we introduce a novel latent variable algorithm 
which retains the general non-linear capabilities of previous models 
but which uses a training procedure based on the EM algorithm. 
We demonstrate the performance of the model on a toy problem 
and on data from flow diagnostics for a multi-phase oil pipeline. 

1 INTRODUCTION 

Many conventional approaches to density estimation, such as mixture models, rely 
on linear superpositions of basis functions to represent the data density. Such 
approaches are unable to discover structure within the data whereby a relatively 
small number of 'causes' act in combination to account for apparent complexity in 
the data. There is therefore considerable interest in latent variable models in which 
the density function is expressed in terms of of hidden variables. These include 
density networks (MacKay, 1995) and Helmholtz machines (Dayan et al., 1995). 
Much of this work has been concerned with predicting binary variables. In this 
paper we focus on continuous data. 
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y(x;W) 

Figure 1: The latent variable density model constructs a distribution function in t-space 
in terms of a non-linear mapping y(x; W) from a latent variable x-space. 

2 THE LATENT VARIABLE MODEL 

Suppose we wish to model the distribution of data which lives in aD-dimensional 
space t = (tl, ... , tD). We first introduce a transformation from the hidden vari­
able space x = (Xl, ... , xL) to the data space, governed by a non:-linear function 
y(x; W) which is parametrized by a matrix of weight parameters W. Typically 
we are interested in the situation in which the dimensionality L of the latent vari­
able space is less than the dimensionality D of the data space, since we wish to 
capture the fact that the data itself has an intrinsic dimensionality which is less 
than D. The transformation y(x; W) then maps the hidden variable space into an 
L-dimensional non-Euclidean subspace embedded within the data space. This is 
illustrated schematically for the case of L = 2 and D = 3 in Figure 1. 

If we define a probability distribution p(x) on the latent variable space, this will 
induce a corresponding distribution p(y) in the data space. We shall refer to p(x) 
as the prior distribution of x for reasons which will become clear shortly. Since 
L < D, the distribution in t-space would be confined to a manifold of dimension L 
and hence would be singular . Since in reality data will only approximately live on a 
lower-dimensional space, it is appropriate to include a noise model for the t vector. 
We therefore define the distribution of t, for given x and W, given by a spherical 
Gaussian centred on y(x; W) having variance {3-1 so that 

( 1) 

The distribution in t-space, for a given value of the weight matrix W, lS then 
obtained by integration over the x-distribution 

p(tIW) = J p(tlx, W)p(x) dx. (2) 

For a given data set V = (t l , ... , t N ) of N data points, we can determine the 
weight matrix W using maximum likelihood. For convenience we introduce an 
error function given by the negative log likelihood: 

N N 

E(W) = -In 11 p(tn IW) = -~ In {J p(tn Ixn, W)p(xn) dxn } . (3) 
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In principle we can now seek the maximum likelihood solution for the weight matrix, 
once we have specified the prior distribution p(x) and the functional form of the 
mapping y(x; W), by minimizing E(W). However, the integrals over x occuring 
in (3), and in the corresponding expression for 'iJ E, will, in general, be analyti­
cally intractable. MacKay (1995) uses Monte Carlo techniques to evaluate these 
integrals and conjugate gradients to find the weights. This is computationally very 
intensive, however, since a Monte Carlo integration must be performed every time 
the conjugate gradient algorithm requests a value for E(W) or 'iJ E(W). We now 
show how, by a suitable choice of model, it is possible to find an EM algorithm for 
determining the weights. 

2.1 EM ALGORITHM 

There are three key steps to finding a tractable EM algorithm for evaluating the 
weights. The first is to use a generalized linear network model for the mappmg 
function y(x; W). Thus we write 

y(x; W) = W ¢(x) (4) 

where the elements of ¢(x) consist of M fixed basis functions cPj(x), and W is a 
D x M matrix with elements Wkj' Generalized linear networks possess the same 
universal approximation capabilities as multi-layer adaptive networks. The price 
which has to be paid, however, is that the number of basis functions must typically 
grow exponentially with the dimensionality L of the input space. In the present 
context this is not a serious problem since the dimensionality is governed by the la­
tent variable space and will typically be small. In fact we are particularly interested 
in visualization applications, for which L = 2. 

The second important step is to use a simple Monte Carlo approximation for the 
integrals over x. In general, for a function Q(x) we can write 

J 1 K 
Q(x)p(x) dx ~ f{ ~ Q(xi ) 

z=l 

(5) 

where xi represents a sample drawn from the distribution p(x). If we apply this to 
(3) we obtain 

E(W) = - t,ln{ ~ tp(tnlxni,w)} (6) 

The third key step to choose the sample of points {xni} to be the same for each 
term in the summation over n. Thus we can drop the index n on x ni to give 

N {I K } E(W) = - ~ In f{ ~p(tnlxi, W) (7) 

We now note that (7) represents the negative log likelihood under a distribution 
consisting of a mixture of f{ kernel functions. This allows us to apply the EM 
algorithm to find the maximum likelihood solution for the weights. Furthermore, as 
a consequence of our choice (4) for the non-linear mapping function, it will turn out 
that the M-step can be performed explicitly, leading to a solution in terms of a set 
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of linear equations. We note that this model corresponds to a constrained Gaussian 
mixture distribution of the kind discussed in Hinton et al. (1992). 

We can formulate the EM algorithm for this system as follows. Setting the deriva­
tives of (7) with respect to Wkj to zero we obtain 

t, t, R;n(W) {t, w"f,(x;) - t~ } f;(x;) = 0 (8) 

where we have used Bayes' theorem to introduce the posterior probabilities, or 
responsibilities, for the mixture components given by 

R- (W) = p(tnlxi, W) 
m L:~=1 p(tnlxil, W) 

(9) 

Similarly, maximizing with respect to (3 we obtain 

K N 

~ = N1D I: I: Rni(W) lIy(xn; W) - t n ll 2 . 

i=l n=l 
(10) 

The EM algorithm is obtained by supposing that, at some point in the algorithm, 
the current weight matrix is given by wold and the current value of (3 is (30ld. Then 
we can evaluate the responsibilities using these values for Wand (3 (the E-step), 
and then solve (8) for the weights to give W new and subsequently solve (10) to give 
(3new (the M-step). The two steps are repeated until a suitable convergence criterion 
is reached. In practice the algorithm converges after a relatively small number of 
iterations. 

A more formal justification for the EM algorithm can be given by introducing 
auxiliary variables to label which component is responsible for generating each data 
point, and then computing the expectation with respect to the distribution of these 
variables. Application of Jensen's inequality then shows that, at each iteration 
of the algorithm, the error function will decrease unless it is already at a (local) 
minimum, as discussed for example in Bishop (1995). 

If desired, a regularization term can be added to the error function to control the 
complexity of the model y(x; W). From a Bayesian viewpoint, this corresponds to 
a prior distribution over weights. For a regularizer which is a quadratic function of 
the weight parameters, this leads to a straightforward modification to the weight 
update equations. It is convenient to write the condition (8) in matrix notation as 

(~TGold~ + AI)(Wnew)T = ~TTold (11) 

where we have included a regularization term with coefficient A, and I denotes the 
unit matrix. In (11) ~ is a f{ x M matrix with elements <l>ij = (/Jj(x i ), T is a I< x D 
matrix, and G is a I< x I< diagonal matrix, with elements 

N N 

Tik = I: Rin(W)t~ Gjj = I: ~n(W). (12) 
n=l n=l 

We can now solve (11) for w new using standard linear matrix inversion techniques, 
based on singular value decomposition to allow for possible ill-conditioning. Note 
that the matrix ~ is constant throughout the algorithm, and so need only be eval­
uated once at the start. 
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Figure 2: Results from a toy problem involving data (' x') generated from a 1-dimensional 
curve embedded in 2 dimensions, together with the projected sample points ('+') and 
their Gaussian noise distributions (filled circles). The initial configuration, determined 
by principal component analysis, is shown on the left, and an intermediate configuration, 
obtained after 4 iterations of EM, is shown on the right. 

3 RESULTS 

We now present results from the application of this algorithm first to a toy problem 
involving data in three dimensions, and then to a more realistic problem involving 
12-dimensional data arising from diagnostic measurements of oil flows along multi­
phase pipelines. 

For simplicity we choose the distribution p(x) to be uniform over the unit square. 
The basis functions ¢j (x) are taken to be spherically symmetric Gaussian func­
tions whose centres are distributed on a uniform grid in x-space, with a common 
width parameter chosen so that the standard deviation is equal to the separation of 
neighbouring basis functions. For both problems the weights in the network were 
initialized by performing principal components analysis on the data and then find­
ing the least-squares solution for the weights which best approximates the linear 
transformation which maps latent space to target space while generating the correct 
mean and variance in target space. 

As a simple demonstration of this algorithm, we consider data generated from a 
one-dimensional distribution embedded in two dimensions , as shown in Figure 2. 

3.1 OIL FLOW DATA 

Our second example arises in the problem of determining the fraction of oil in a 
multi-phase pipeline carrying a mixture of oil, water and gas (Bishop and James, 
1993). Each data point consists of 12 measurements taken from dual-energy gamma 
densitometers measuring the attenuation of gamma beams passing through the pipe. 
Synthetically generated data is used which models accurately the attenuation pro­
cesses in the pipe, as well as the presence of noise (arising from photon statistics). 
The three phases in the pipe (oil, water and gas) can belong to one of three different 
geometrical configurations, corresponding to stratified, homogeneous, and annular 
flows, and the data set consists of 1000 points distributed equally between the 3 
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Figure 3: The left plot shows the posterior-mean projection of the oil data in the latent 
space of the non-linear model. The plot on the right shows the same data set projected 
onto the first two principal components. In both plots, crosses, circles and plus-signs 
represent the stratified, annular and homogeneous configurations respectively. 

classes. We take the latent variable space to be two-dimensional. This is appro­
priate for this problem as we know that, locally, the data must have an intrinsic 
dimensionality of two (neglecting noise on the data) since, for any given geometrical 
configuration of the three phases, there are two degrees of freedom corresponding to 
the fractions of oil and water in the pipe (the fraction of gas being redundant since 
the three fractions must sum to one). It also allows us to use the latent variable 
model to visualize the data by projection onto x-space. 

For the purposes of visualization, we note that a data point t n induces a posterior 
distribution p(xltn, W*) in x-space, where W* denotes the value of the weight 
matrix for the trained network. This provides considerably more information in the 
visualization space than many simple techniques (which generally project each data 
point onto a single point in the visualization space). For example, the posterior 
distribution may be multi-modal, indicating that there is more than one region of 
x-space which can claim significant responsibility for generating the data point. 
However, it is often convenient to project each data point down to a unique point in 
x-space. This can be done by finding the mean of the posterior distribution, which 
itself can be evaluated by a simple Monte Carlo integration using quantities already 
calculated in the evaluation of W* . 

Figure 3 shows the oil data visualized in the latent-variable space in which, for each 
data point, we have plotted the posterior mean vector. Again the points have been 
labelled according to their multi-phase configuration. We have compared these re­
sults with those from a number of conventional techniques including factor analysis 
and principal component analysis. Note that factor analysis is precisely the model 
which results if a linear mapping is assumed for y(x; W), a Gaussian distribution 
p(x) is chosen in the latent space, and the noise distribution in data space is taken 
to be Gaussian with a diagonal covariance matrix. Of these techniques, principal 
component analysis gave the best class separation (assessed subjectively) and is 
illustrated in Figure 3. Comparison with the results from the non-linear model 
clearly shows that the latter gives much better separation of the three classes, as a 
consequence of the non-linearity permitted by the latent variable mapping. 
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4 DISCUSSION 

There are interesting relationships between the model discussed here and a number 
of well-known algorithms for unsupervised learning. We have already commented 
that factor analysis is a special case of this model, involving a linear mapping from 
latent space to data space. The Kohonen topographic map algorithm (Kohonen, 
1995) can be regarded as an approximation to a latent variable density model of 
the kind outlined here. Finally, there are interesting similarities to a 'soft' version 
of the 'principal curves' algorithm (Tibshirani , 1992). 

The model we have described can readily be extended to deal with the problem of 
missing data, provided we assume that the missing data is ignorable and missing at 
random (Little and Rubin, 1987) . This involves maximizing the likelihood function 
in which the missing values have been integrated out. For the model discussed here, 
the integrations can be performed analytically, leading to a modified form of the 
EM algorithm. 

Currently we are extending the model to allow for mixed continuous and categorical 
variables . We are also exploring Bayesian approaches, based on Markov chain Monte 
Carlo, to replace the maximum likelihood procedure. 
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