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Abstract

For a given recurrent neural network, a discrete-time model may
have asymptotic dynamics different from the one of a related
continuous-time model. In this paper, we consider a discrete-time
model that discretizes the continuous-time leaky integrator model
and study its parallel and sequential dynamics for symmetric net-
works. We provide sufficient (and necessary in many cases) con-
ditions for the discretized model to have the same cycle-free dy-
namics of the corresponding continuous-time model in symmetric
networks.

1 INTRODUCTION

For an n-neuron recurrent network, a much-studied and widely-used continuous-
time (CT) model is the leaky integrator model (Hertz, et al., 1991; Hopfield, 1984),
given by a system of nonlinear differential equations:

dz; = ]
T,-—dt—' =—z; + a',-(jz—:l wijz; +;), t>0, i=1,.,n, (1)
and a related discrete-time (DT) version is the sigmoidal model (Hopfield, 1982;
Marcus & Westervelt, 1989), specified by a system of nonlinear difference equations:

n
x,-(t+1):0’,-(Zw,-jxj(t)+l,'), t=0,1,.., i=1,..,n, (2)
ji=1
where z;(t), taking values in a compact interval [a, b], represents the state of neuron

i at time ¢, 7; is the time constant, W = [wj;] is the real-valued weight matrix,
o; : ® — [a,b] is the activation function which often takes a sigmoidal form and I;
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is the constant external input to neuron i. When the network is symmetric (i.e.,
W is symmetric), the dynamics of both models have been well understood: the CT
model (1) is always convergent, namely, every initial state will approach a fixed
point asymptotically (Hirsch, 1989; Hertz, et al., 1991; Hopfield, 1984), and the
DT model (2) is either convergent or approaches a periodic orbit of period 2 (i.e.,
a 2-cycle) (Goles, et al., 1985; Marcus & Westervelt, 1989; Koiran, 1994). For
results and analyses of fixed points and cycles in networks that are not necessarily
symmetric, see (Brown, 1992; Bruck, 1990; Goles, 1986).

For a given symmetric network (n, W, o;, I;), the existence of possible 2-cycles in
its discrete-time operation is sometimes trouble-some and undesirable, especially in
associative memory and neural optimization applications where only fixed points are
used to represent memory patterns (Hopfield, 1982) or to encode feasible solutions
(Hertz, et al., 1991). Originally in (Hopfield, 1982) a type of sequential dynamics
(in which only one randomly chosen neuron updates its state at any time) had
to be employed in order to ensure the convergent dynamics of (2). A great deal
of work on asymptotic behavior of (2) has focused on constraining the symmetric
matrix W so that the model exhibits only convergent dynamics. It was shown in
(Goles, et al., 1985) that, for o; equal to the -1/+1 signum function, if W is positive
definite on the set {—1,0,1}", then the model (2) is convergent only to fixed points.
In (Marcus & Westervelt, 1989), a similar condition on W and neuron gains was
derived for networks with differentiable o;’s (see also (Marcus, et al., 1990; Waugh
& Westervelt, 1993)). Nevertheless, the fact remains as that not all symmetric
networks that are convergent in (1) show the same convergent dynamics in (2).

Such implausibility of the DT model (2) in fully inheriting the dynamics of the CT
model (1) leads to study of another DT model in this paper, which generalizes (2)
with some new parameters. For symmetric networks, this model has the same types
of parallel and sequential dynamics of (2). But, under some conditions on the new
parameters (rather than on the weight matrix itself), this model has the same global
convergent parallel dynamics and the same local stability around fixed points of (1).
Moreover, with these new parameters as bifurcation parameters, the existence of
possible 2-cycles can be understood in this model as resulting from the existence of
possible period-doubling bifurcation when the parameters are varied. Finally, it is
this model, rather than (2), that is used more often in practice as a discrete-time
approximation of (1). Based on all of the above, the DT model studied here is a
more appropriate discrete-time model of neural networks for purposes of theoretical
investigation, numerical simulation and practical application.

2 A DISCRETE-TIME MODEL

The DT model that is studied in this paper is

zi(t+1) = (1 — ap)zi(t) + a;a;(zn: wijz;()+ L), t=0,1,..., i=1,..,n, (3)
j=1

where «;’s are newly introduced parameters, taking values in (0, 1]. This model is
based on the Euler discretization of the CT model (1) with all ; =1 !, with z;(s)
and (z;(s + 1) — z;(s))/a; approximating z;(¢) and dz;(t)/dt in (1), respectively,
at t = s*a;. It takes the model (2) as its special case of all a; = 1. The new
neuron state z;(¢ + 1) is now a linear combination of the activation function value

1When (1) is globally convergent to fixed points, neglecting all 7; does not change its
dynamics.
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0i(3_=1 wijzj(t) + I;) and the old state z;(t). Because of a; € (0, 1], the model (3)
is well defined, in that the iterative maps resulting from the model,

Fi(z) = (1 — a;)z; + Olia'i(z: wi;zj + I;), 4)
Jj=1

preserve neuron states in the compact interval [a, b].

For the purposes of this paper, neuron activation functions o; are assumed to satisfy
the following constraints:

(1) o; have continuous first-order derivatives o/(y) for all y € ®;

(ii) o; are monotone increasing with ol(y) > 0;

(iii) o} (y) — 0 as y — +o00; and

(iv) o}(y) take maximal values u;, which are usually referred to as neuron gains.

Such functions are fairly general, including often-used [—1, 1]- and [0, 1]-sigmoids,
such as tanh(pu;y), 2/7tan~!(mwp,y/2), and 1/(1 + e~#¥). The constraints on o;’s
are sufficient for the functions defined by

Gil(es) = ]0 " o (w)dy. (5)

to have the following properties that will be used subsequently in proofs of several
propositions of this paper:

(i) Gi(y) = 07 '(y), and particularly G}(Az;(t)/c; + zi(t)) = 2 wiizi(t) + L;
(i) Gi(y) — Gi(2) < G'(9)(y — 2) — 1/(2m:)(y — 2)* < G'(y)(y — 2);

(i) GY (y) = 1/0}(o; ' (v)); and
(iv) Gi(yo + 11) — Gi(yo) > (min, G}(2))y1 = 1 /pi,

where Az;(t) = z;(t + 1) — z;(2).

3 PARALLEL AND SEQUENTIAL DYNAMICS

In parallel dynamics, also called synchronous dynamics, all neurons update their
states in each time step. In sequential dynamics, a single neuron updates its state
in each time step in such a way that each neuron updates its state infinitely-many
times, over all time steps ¢. The most widely studied special case of sequential
dynamics is called asynchronous dynamics (Hopfield, 1982), in which the neuron
whose state is updated is chosen at random. This models asynchronous evolution
of a neural network circuit composed of autonomous neurons.

It is easy to see that the discretized DT model (3) shares the same set of fixed
points with the CT model (1); that is, a point z* is a fixed point of (3) (i.e.,
z; = F;(z*) with F; given in (4)), if and only if it is a fixed point of (1) (i.e.,
—z} + 0i(32;; wijz} + L) = 0).

However, as the result of discretization, fixed points may have different asymptotic
stability (Wang & Blum, 1992) and periodic points that are not fixed points may
occur (Blum & Wang, 1992; Marcus & Westervelt, 1989) in the DT model, especially
when all @; = 1. Nevertheless, the discretized DT model retains the same type of the
global parallel dynamics and sequential dynamics of (2), as stated in the following
two propositions. These results extend the results for all o; = 1 in (Marcus &
Westervelt, 1989) to «; € (0, 1].
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Proposition 1 If W is symmetric, any trajectory in parallel dynamics of (3) tends
to either a fized point or a 2-cycle.

Proof. Consider the following function:

E(t) = —Zw,Jz,(t)xJ(t—l) ZI[:c,(t)+z,(t—1)]

)J

+ Z(z — ;)Gi(zi(t — 1)) + E ;Gi(Azi(t — 1)/a; + zi(t — 1)).

When a; = 1, this function is the one used in (Goles, et al,, 1985; Marcus &
Westervelt, 1989). It can be shown (the details is omitted due to space limitation)
that the one-step change of E(t), AE(t) = E(t+1)—E(t), is always less than or equal
to 0 and AE(t) = 0 implies that the two-step change Ajz(t) = z(t+1)—z(t—1) is
necessarily equal to zero. As E(t) is bounded from below, the network is therefore
convergent to either a fixed point or a 2-cycle. m]

Proposition 2 If W is symmetric with all wi; > —(2 — ;) /(@ip;), the DT model
(3) has the sequential dynamics convergent to fized points for any o; € (0, 1].

Proof. Consider the function used in (Hopfield, 1984; Marcus & Westervelt, 1989),

1) = —3 Y wigmi(t)e;(0) = 3 hiza(t) + 32 Gila() ©)
i R R

If at time ¢t only neuron 7 is chosen to update its state and all the others remain
unchanged, then L(t) is not increasing, and it is strictly decreasing when the one-
step change in z;(t), Az;(t), is not 0. (The derivation is omitted due to space
limitation.) Hence, any sequential trajectory tends to some fixed point. m]

4 GLOBAL CONVERGENCE

Call a model of a neural network cycle-free if it is globally convergent to fixed points
only. The following proposition provides a condition that eliminates the possible
“spurious” periodic dynamic behaviors of the discretized DT model (3).

Proposition 3 If W is symmetric, a sufficient condition for (3) to be cycle-free in
parallel dynamics is

the matrix W + (21 — A)A~'M ™1 is positive definite, )
where A = diag(e;) and M = diag(u;) are the diagonal matrices formed by the

parameters a; and the neuron gains y;.

Proof. Use the energy function L(t) used in the proof of Proposition 2. The one-step
difference AL(t) of L(t) along any trajectory z(t) has an upper bound

AL(t) < —%Ax(t)T(W + (21 — A)AT' M~ N Az(t). (8)
The condition (7) implies that the upper bound is negative and hence the parallel

dynamics is globally convergent. O

In a simple case where all gains p; = 1 (e.g., 0;(z) = tanh(z)) and o; = a, this
proposition says that the model is cycle-free if the matrix W+[(2—a)/a]I is positive
definite.
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The sufficient condition (7) generalizes many existing conditions for the cycle-free
dynamics in the literature. When oy = 1, it reduces to that matrix W + M~! is
positive definite, which is the one presented in (Marcus & Westervelt, 1989) (with
all R; = 1 in their model) for the DT model (2) to be cycle-free. Moreover, when
u — oo the sigmoidal functions tend to the signum function. If in this case a; > €
for some fixed positive ¢, the condition (7) reduces to that the weight matrix W be
positive definite, which is the one in (Goles, et al., 1985), except that in the latter
case W need be positive definite only on the set {—1,0,1}".

When a; are sufficiently small, the matrix in (7) will be dominated by its positive
diagonal entries and become positive definite. In fact,

Corollary 1 Let A be the minimum eigenvalue of the symmetric matriz W. If
etther (i) Amin > 0 (i.e., W is positive definite itself) and «; are arbitrary in (0, 1],
or (ii) Amin < 0 and all a;’s satisfy (2 — a;)/(@ipti) > —Amin, then the model (3)
is cycle-free.

Proof. Let W = PTAP be an orthogonal decomposition of W; that is, A is a
diagonal matrix formed by the eigenvalues of W and P is some orthogonal matrix
with its transpose PT = P~1. The condition (7) is equivalent to that the diagonal
matrix

A+ (21 — A)A™'M™! is positive definite.
The later condition can be fulfilled by either condition (i) or (ii). The conclusion
then follows from Proposition (3). O

This corollary implies that if the weight matrix W is formed according to the Hebb
rule as constructed in (Hopfield, 1982), then the model is cycle-free. This is because
W is an outer-product W = VV'T — ml of a collection of some “memory” vectors
V = [v1, ..., vm], and it is positive definite.

5 LOCAL ASYMPTOTIC STABILITY

When all o; = a, the condition (7) in Proposition 3 becomes
. 2 — . .. .
the matrix W + —EM -1 s positive definite.
«a

This is the one given in (Wang & Blum, 1992) that ensures consistency of the DT
model (3) with the CT model (1) on local asymptotic dynamics around fixed points
for symmetric networks. The consistency means that any fixed point has exactly
the same asymptotic stability in both (3) and (1). If these two models are consistent
in this regard, a fixed point is an attractor (saddle point or repellor, respectively)
of (3) if and only if it is an attractor (saddle point or repellor) of (1). This answers
the issue raised in (Marcus & Westervelt, 1989) on why a stable fixed point of (1)
is also stable in (2), if a specific version of the condition (7) is met. For symmetric
networks, the consistency condition on the local asymptotic dynamics between the
CT and DT models turns out to be a consistency condition between them on the
global convergent dynamics as well. It is certainly interesting to see if this type of
relationship between the local and global consistencies can be extended to general
(non-symmetric) networks.

6 PERIOD-DOUBLING BIFURCATION

In many cases, the condition (7) in Proposition 3 is also necessary for the network
to be cycle-free. This can be addressed from a bifurcation point of view by treating



Absence of Cycles in Symmetric Neural Networks 377

the parameters a; as bifurcation parameters. Essentially, the condition (7) gives no
room for existence of period-doubling bifurcation, which is the source of generating
possible 2-cycles.

Proposition 4 Let the activation functions o; be symmetric, i.e., o; : ® — [—a, a],
and satisfy

0i(0) =0, ;(0) = pi.
Let the external bias vector I = 0. Then condition (7) is also a necessary condition
for the network to be cycle-free.

Proof. Define C = {(ay,...,an) | W + (2] — A)A"*M~! is positive definite}. Let
C; denote the projection of the i*» components of the n-tuples in C. Because
a < o € C; implies a € Cj, each C; is either the entire interval (0, 1] or an open
interval (0, ¢;,) for some 0 < c;, < 1. Notice that 0 is a fixed point of the network.

The Jacobian of the iterative maps in (4) at the fixed point 0 is
(I-A)+AMW. 9)

Notice that the condition (7) is equivalent to that the eigenvalues of (21 — A) +
AMW are all positive, which is further equivalent to that the Jacobian (9) has all
eigenvalues A > —1.

If C = (0,1]*, the model has no cycles, according to Proposition 3, for any
(a1,...,a,) € (0,1]*. However, if C; = (0,c¢;,) for some i and ¢;, < 1, some
eigenvalue of the Jacobian (9) becomes less than —1 when o; exceeds the “thresh-
old” ¢;,. During this course of changing «;, the network undergoes generically a
period-doubling bifurcation (Ruelle, 1989), resulting in emergence of some 2-cycles.
Thus, in this case the condition (7) in Proposition 3 is also necessary to prevent this
type of period-doubling bifurcation from happening around fixed points and hence
to eliminate possibility of generating 2-cycles. m]

Examples of o;’s satisfying hypotheses of Proposition 4 are tanh,; : £ — [—1,1]
with tanh, (z) = tanh(p;z2).

7 EFFECT OF NEURON GAINS IN NEURAL
COMPUTATIONS

Considerable research has been conducted on using (1) in neural computations such
as solving optimization problems approximately; see (Hertz, et al., 1991, Chapter
4) for an overview. Often, the neuron gains y; are also modified while the network
is evolving. A popular algorithm of this kind uses mean field annealing (MFA)
(Peterson & Anderson, 1988) to solve optimization problems, in which small neuron
gains are used initially, and increased gradually. Similar situations also happen in
some learning algorithms.

In practice, a discretized model such as (3) is used instead. Proposition 3 gives some
criterion on how to choose the “discretization step-sizes” «; as functions of u;. If
efficiency, for example, were the paramount consideration, one might want to choose
«; as large as possible while ensuring that the sufficient condition of Proposition 3
is met.

The effect of changing u on the largest sufficing o can be examined as follows. For
simplicity, consider the case where all neuron gains u; equal g and all o; equal to a.
Let ¢;, i = 1,2, be the respective supremums of o’s such that W+(2—a)/(ad;)I are
positive definite when the neuron gains u are equal to two different values d; and
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d2. Then ¢; and ¢ satisfy (2 —¢1)/(e1d1) = (2 — ¢2)(c2dz). Letting B = da/d;, the
above gives ¢ = 2¢1 /(c1+ (2~ )). Clearly, ¢ 1s proportional to the reciprocal of
the ratio 8. Thus, when 4 is small, & can be taken larger than when yu is large. This
may be used to evolve the network efficiently in the beginning and slow it down
later, while ensuring that 2-cycles are never retrieved.
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