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Abstract 

We investigate the optimization of neural networks governed by 
general objective functions. Practical formulations of such objec­
tives are notoriously difficult to solve; a common problem is the 
poor local extrema that result by any of the applied methods. In 
this paper, a novel framework is introduced for the solution oflarge­
scale optimization problems. It assumes little about the objective 
function and can be applied to general nonlinear, non-convex func­
tions; objectives in thousand of variables are thus efficiently min­
imized by a combination of techniques - deterministic annealing , 
multiscale optimization, attention mechanisms and trust region op­
timization methods. 

1 INTRODUCTION 

Many practical problems in computer vision, pattern recognition , robotics and other 
areas can be described in terms of constrained optimization . In the past decade, 
researchers have proposed means of solving such problems with the use of neural 
networks [Hopfield & Tank, 1985; Koch et ai., 1986], which are thus derived as 
relaxation dynamics for the objective functions codifying the optimization task. 

One disturbing aspect of the approach soon became obvious , namely the appar­
ent inability of the methods to scale up to practical problems, the principal reason 
being the rapid increase in the number of local minima present in the objectives as 
the dimension of the problem increases. Moreover most objectives, E( v), are highly 
nonlinear, non-convex functions of v , and simple techniques (e.g. steepest descent) 
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will , in general , locate the first minimum from the starting point. 

In this work, we propose a framework for solving large-scale instances of such opti­
mization problems. We discuss several techniques which assist in avoiding spurious 
minima and whose combined result is an objective function solution that is compu­
tationallyefficient, while at the same time being globally convergent. In section 2.1 
we discuss the use of deterministic annealing as a means of avoiding getting trapped 
into local minima. Section 2.2 describes multiscale representations of the original 
objective in reduced spatial domains. In section 2.3 we present a scheme for reduc­
ing the computational requirements of the optimization method used, by means of 
a focus of attention mechanism. Then, in section 2.4 we introduce a trust region 
method for the relaxation phase of the framework, which uses second order informa­
tion (i.e. curvature) of the objective function. In section 3 we present experimental 
results on the application of our framework to a 2-D region segmentation objective 
with discontinuities. Finally, section 4 summarizes our presentation. 

2 THEORETWALFRAMEWORK 
Our optimization framework takes the form of a list of nested loops indicating the 
order of conceptual (and computational) phases that occur: from the outer to the 
inner loop we make use of deterministic annealing, a multiscale representation , an 
attentional mechanism and a trust region optimization method. 

2.1 ANNEALING NETS 

The usefulness of statistical mechanics for designing optimization procedures has 
recently been established; prime examples are simulated annealing and its various 
mean field theory approximations [Hopfield & Tank, 1985; Durbin & Willshaw, 
1987]. The success of such methods is primarily due to entropic terms included in 
the objective (i .e. syntactic terms), but the price to pay is their highly nonlinear 
form. Interestingly, those terms can effectively be convexified by the use of a "tem­
perature" parameter, T , allowing for a reduction in the number of minima and the 
ability to track the solution through "temperature". 

2.2 MULTISCALE REPRESENTATION 

To solve large-scale problems in thousands of variables , we need to speed up the 
convergence of the method while still retaining valid state-space trajectories. To 
accomplish this we introduce smaller, approximate versions of the problem at coarser 
spatial scales [Mjolsness et al. , 1991] ; the nonlinearity of the original objective is 
maintained at all scales, as opposed to other approaches where the objectives and 
their derivatives are either approximated by the use of finite difference methods , 
or solved for by multigrid techniques where a quadratic objective is still assumed. 
Consequently, the multiscale representation exploits the effective smoothness in the 
objectives: by alternating relaxation phases between coarser and finer scales, we 
use the former to identify extrema and the latter to localise them. 

2.3 FOCUS OF ATTENTION 

To further reduce the computational requirements of larg~scale optimization (and 
indirectly control its temporal behavior), we use a focus of attention (FoA) mecha­
nism [Mjolsness & Miranker , 1993], reminiscent of the spotlight hypothesis argued 
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to exist in early vision systems [Koch & Ullman, 1985; Olshausen et al., 1993]. The 
effect of a FoA is to support efficient, responsive analysis: it allows resources to be 
focused on selected areas of a computation and can rapidly redirect them as the 
task requirements evolve. 

Specifically, the FoA becomes a characteristic function, 7l'(X) , determining which 
of the N neurons are active and which are clamped during relaxation, by use of a 
discrete-valued vector, X, and by the rule: 7l'i(X) = 1 if neuron Vi is in the FoA, and 
zero otherwise. Moreover, a limited number, n, of neurons Vi are active at any given 
instant: I:i 7l'i(X) = n, with n« Nand n chosen as an optimal FoA size. To tie the 
attentional mechanism to the multiscale representation, we introduce a partition 
of the neurons Vi into blocks indexed by a (corresponding to coarse-scale block­
neurons), via a sparse rectangular matrix Bia E {O, I} such that I:a Bia = 1, Vi, 
with i = 1, ... ,N, a = 1,oo.,K and K«N. Then 7l'i(X) = I:aBiaXa, and we use 
each component of X for switching a different block of the partition; thus, a neuron 
Vi is in the FoA iff its coarse scale block a is in the FoA, as indicated by Xa. As 
a result, our FoA need not necessarily have a single region of activity: it may well 
have a distributed activity pattern as determined by the partitions Bia. 1 

Clocked objective function notation [Mjolsness & Miranker, 1993] makes the task 
more apparent: during the active-x phase the FoA is computed for the next active­
v phase, determining the subset of neurons Vi on which optimization is to be carried 
out. We introduce the quantity E ;dv] == g~ ~ (Ti is a time axis for Vi) [Mjolsness 
& Miranker, 1993] as an estimate of the predicted dE arising from each Vi if it joins 
the FoA. For HopfieldjGrossberg dynamics this measure becomes: 

E ;d v ] = _g~(gi1(Vi)) (~~) 2 == -gHU i)(E,i)2 (1) 

wi th E,i ~f 'V'i E, and gi the transfer function for neuron Vi (e.g. a sigmoid func­
tion). Eq. (1) is used here analogously to saliency measures introduced into neu­
rophysiological work [Koch & Ullman, 1985]; we propose it as a global measure 
of conspicuousness. As a result, attention becomes a k-winner-take-all (kWTA) 
network: 

a a 

where I refers to the scale for which the FoA is being determined (I = 1, ... , L), EEl 
conforms with the clocked objective notation, and the last summand corresponds 
to the subspace on which optimization is to be performed, as determined by the 
current FoA.2 Periodically, an analogous FoA through spatial scales is run, allowing 
re-direction of system resources to the scale which seems to be having the largest 
combined benefit and cost effect on the optimization [Tsioutsias & Mjolsness, 1995]. 
The combined effect of multiscale optimization and FoA is depicted schematically in 
Fig. 1: reduced-dimension functionals are created and a FoA beam "shines" through 
scales picking the neurons to work on. 

1 Preferably, Bia will be chosen to minimize the number of inter-block connections. 
2 Before computing a new FoA we update the neighbors of all neurons that were included 

in the last focus; this has a similar effect to an implicit spreading of activation. 
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Layer 3 

Layer 1 

Figure 1: Multiscale Attentional Neural Nets: FoA on a layer (e.g. L=l) competes 
with another FoA (e.g . L=2) to determine both preferable scale and subspace. 

2.4 OPTIMIZATION PHASE 

To overcome the problems generally associated with the steepest descent method, 
other techniques have been devised . Newton 's method, although successful in small 
to medium-sized problems, does not scale well in large non-convex instances and is 
computationally intensive. Quasi-Newton methods are efficient to compute , have 
quadratic termination but are not globally convergent for general nonlinear, non­
convex functions. A method that guarantees global convergence is the trust region 
method [Conn et al. , 1993] . The idea is summarized as follows : Newton's method 
suffers from non-positive definite Hessians; in such a case, the underlying function 
m(k)(6) obtained from the 2nd order Taylor expansion of E(Vk + 6) does not have 
a minimum and the method is not defined, or equivalently, the region around the 
current point Vk in which the Taylor series is adequate does not include a minimizing 
point of m(k)(6). To resolve this , we can define a neighborhood Ok of Vk such that 
m(k)(6) agrees with E(Vk + 6) in some sense; then, we pick Vk+l = Vk + 6k , where 
6 k minimizes m(k)(6) , V(Vk + 6) E Ok . Thus , we seek a solution to the resulting 
subproblem: 

(3) 

where 1I · lIp is any kind of norm (for instance, the L2 norm leads to the Levenberg­
Marquardt methods) , and ~k is the radius of Ok, adaptively modified based on an 
accuracy ratio Tk = (~E(k)/~m(k) = (E(k ) - E(Vk + 6k»/(m(k)(O) - m(k)(6k»; 
~E(k) is the "actual reduction" in E(k) when step 6 k is taken, and ~m(k) the 
"predicted reduction" . The closer Tk is to unity, the better the agreement between 
the local quadratic model of E (k) and the objective itself is , and ~k is modified 
adaptively to reflect this [Conn et al., 1993]. 

We need to make some brief points here (a complete discussion will be given else­
where [Tsioutsias & Mjolsness, 1995]): 
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• At each spatial scale of our multiscale representation, we optimize the corre­
sponding objective by applying a trust region method. To obtain sufficient 
relaxation progress as we move through scales we have to maintain mean­
ingful region sizes, Llk; to that end we use a criterion based on the curvature 
of the functionals along a searching direction. 

• The dominant relaxation computation within the algorithm is the solution 
of eq. (3). We have chosen to solve this subproblem with a preconditioned 
conjugate gradient method (PCG) that uses a truncated Newton step to 
speed up the computation; steps are accepted when a sufficiently good 
approximation to the quasi-Newton step is found. 3 In our case, the norm 
in eq. (3) becomes the elliptical norm 1I~llc = ~tc~, where a diagonal 
preconditioner to the Hessian is used as the scaling matrix C. 

• If the neuronal connectivity pattern of the original objective is sparse (as 
happens for most practical combinatorial optimization problems), the pat­
tern of the resulting Hessian can readily be represented by sparse static data 
structures,4 as we have done within our framework. Moreover, the partition 
matrices, Bia, introduce a moderate fill-in in the coarser objectives and the 
sparsity of the corresponding Hessians is again taken into account. 

3 EXPERIMENTS 

We have applied our proposed optimization framework to a spatially structured 
objective from low-level vision, namely smooth 2-D region segmentation with the 
inclusion of discontinuity detection processes: 

ij ij 

ij ij ij 

where d is the set of image intensities, j is the real-valued smooth surface to be fit to 
the data, lV and lh are the discrete-valued line processes indicating a non-zero value 
in the intensity gradient, and ¢(x) = -(2go)-1[lnx+ln(1-x)] is a barrier function 
restricting each variable into (0,1) by infinite barriers at the borders. Eq. (4) is 
a mixed-nonlinear objective involving both continuous and binary variables ; our 
framework optimizes vectors j, lh and lV simultaneously at any given scale as con­
tinuous variables, instead of earlier two-step, alternate continuous/discrete-phase 
approaches [Terzopoulos, 1986]. 

We have tested our method on gradually increasing objectives, from a "small" size 
of N=12,288 variables for a 64x64 image, up to a large size of N=786 ,432 variables 
for a 512x512 image; the results seem to coincide with our theoretical expectations: 
a significant reduction in computational cost was observed and consistent conver­
gence towards the optimum of the objective was found for various numbers of coarse 
scales and FoA sizes. The dimension of the objective at any scale I was chosen via 
a power law: N(L-l+1)! L, where L is the total number of scales and N the size of 

3 The algorithm can also handle directions of negative curvature. 
4 This property becomes important in a neural net implementation. 
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the original objective. 

The effect of our multiscale optimization with and without a FoA is shown in Fig. 2 
for the 128x128 and the 512x512 nets, where E( v*) is the best final configuration 
with a one-level no-FoA net , and cumulative cost is an accumulated measure in the 
number of connection updates at each scale; a consistent scale-up in computational 
efficiency can be noted when L > 1, while the cost measure also reflects the relative 
total wall-clock times needed for convergence. Fig. 3 shows part of a comparative 
study we made for saliency measures alternative to eq. (1) (e.g. g~IE,il), in order 
to investigate the validity of eq. (1) as a predictor of l:!..E: the more prominent 
"linearity" in the left scatterplot seems to justify our choice of saliency. 
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Figure 2: Multiscale Optimization (curves labeled by number of scales used): #­
numbered curves correspond to nets without a FoA , simply-numbered ones to nets 
with a FoA used at all scales. The lowest costs result from the combined use of 
multiscale optimization and FoA. 

4 CONCLUSION 

We have presented a framework for the optimization of large-scale objective func­
tions using neural networks that incorporate a multiscale attentional mechanism. 
Our method allows for a continuous adaptation of the system resources to the com­
putational requirements of the relaxation problem through the combined use of 
several techniques. The framework was applied to a 2-D image segmentation ob­
jective with discontinuities; formulations of this problem with tens to hundreds of 
thousands of variables were then successfully solved. 
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Figure 3: Saliency Comparison: (left), saliency as in eq. (1); (right), the absolute 
gradient was used instead. 
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