
Adaptive Mixture of Probabilistic Transducers

Yoram Singer
AT&T Bell Laboratories
singer@research.att.com

Abstract
We introduce and analyze a mixture model for supervised learning of
probabilistic transducers. We devise an online learning algorithm that
efficiently infers the structure and estimates the parameters of each model
in the mixture. Theoretical analysis and comparative simulations indicate
that the learning algorithm tracks the best model from an arbitrarily large
(possibly infinite) pool of models. We also present an application of the
model for inducing a noun phrase recognizer.

1 Introduction

Supervised learning of a probabilistic mapping between temporal sequences is an important
goal of natural sequences analysis and classification with a broad range of applications such
as handwriting and speech recognition, natural language processing and DNA analysis. Re­
search efforts in supervised learning of probabilistic mappings have been almost exclusively
focused on estimating the parameters of a predefined model. For example, in [5] a second
order recurrent neural network was used to induce a finite state automata that classifies
input sequences and in [1] an input-output HMM architecture was used for similar tasks.

In this paper we introduce and analyze an alternative approach based on a mixture model
of a new subclass of probabilistic transducers, which we call suffix tree transducers. The
mixture of experts architecture has been proved to be a powerful approach both theoretically
and experimentally. See [4,8,6, 10,2, 7] for analyses and applications of mixture models,
from different perspectives such as connectionism, Bayesian inference and computational
learning theory. By combining techniques used for compression [13] and unsupervised
learning [12], we devise an online algorithm that efficiently updates the mixture weights
and the parameters of all the possible models from an arbitrarily large (possibly infinite)
pool of suffix tree transducers. Moreover, we employ the mixture estimation paradigm to
the estimation of the parameters of each model in the pool and achieve an efficient estimate
of the free parameters of each model. We present theoretical analysis, simulations and
experiments with real data which show that the learning algorithm indeed tracks the best
model in a growing pool of models, yielding an accurate approximation of the source. All
proofs are omitted due to the lack of space

2 Mixture of Suffix Tree Transducers

Let ~in and ~Ot.lt be two finite alphabets. A Suffix Tree Transducer T over (~in, ~Ot.lt) is a
rooted,l~jn I-ary tree where every internal node of T has one child for each symbol in ~in.
The nodes of the tree are labeled by pairs (s, l' ~), where s is the string associated with the path
(sequence of symbols in ~n) that leads from the root to that node, and 1'~ : ~Ot.lt -+ [0,1]
is the output probability function. A suffix tree transducer (stochastically) maps arbitrarily
long input sequences over ~in to output sequences over ~Ot.lt as follows. The probability

382 Y. SINGER

that T will output a string Yl, Y2, ... ,Yn in I:~ut given an input string Xl, X2, ... , Xn in
I:in, denoted by PT(Yl, Y2, ... , YnlXl, X2 , "" xn), is n~=li8. (Yk), where sl = Xl, and
for 1 ::; j ::; n - 1, si is the string labeling the deepest node reached by taking the path
corresponding to xi, xi -1, Xi -2, ... starting at the root of T. A suffix tree transducer is
therefore a probabilistic mapping that induces a measure over the possible output strings
given an input string. Examples of suffix tree transducers are given in Fig. 1.

Figure 1: A suffix tree transducer (left) over (Lin, LQut) = ({O, 1} , {a , b, c}) and two ofits possible
sub-models (subtrees). The strings labeling the nodes are the suffixes of the input string used to predict
the output string. At each node there is an output probability function defined for each of the possible
output symbols. For instance, using the suffix tree transducer depicted on the left, the probability of
observing the symbol b given that the input sequence is ... ,0, 1,0, is 0.1. The probability of the
current output, when each transducer is associated with a weight (prior), is the weighted sum of the
predictions of each transducer. For example, assume that the weights of the trees are 0.7 (left tree), 0.2
(middle), and 0.1. then the probability thattheoutputYn = a given that (X n -2, Xn-l, Xn) = (0,1,0)
is 0.7· P7j (aIOl0) + 0.2· P7i(aIIO) + 0.1 . P7)(aIO) = 0.7 . 0.8 + 0.2 . 0.7 + 0.1 . 0.5 = 0.75.

Given a suffix tree transducer T we are interested in the prediction of the mixture of all
possible subtrees of T. We associate with each subtree (including T) a weight which can be
interpreted as its prior probability. We later show how the learning algorithm of a mixture
of suffix tree transducers adapts these weights with accordance to the performance (the
evidence in Bayesian terms) of each subtree on past observations. Direct calculation of the
mixture probability is infeasible since there might be exponentially many such subtrees.
However, the technique introduced in [13] can be generalized and applied to our setting.
Let T' be a subtree of T. Denote by nl the number of the internal nodes of T' and by
n2 the number of leaves of T' which are not leaves of T. For example, nl = 2 and
n2 = I, for the tree depicted on the right part of Fig. 1, assuming that T is the tree
depicted on the left part of the figure. The prior weight of a tree T'. denoted by Po(T') is
defined to be (1 - Q-)n\ an2 , where a E (0, 1). Denote by Sub(T) the set of all possible
subtrees of T including T itself. It can be easily verified that this definition of the weights
is a proper measure, i.e., LT/ESUb(T) Po(T') = 1. This distribution over trees can be
extended to unbounded trees assuming that the largest tree is an infinite lI:in I-ary suffix tree
transducer and using the following randomized recursive process. We start with a suffix
tree that includes only the root node. With probability a we stop the process and with
probability 1 - a we add all the possible lI:in I sons of the node and continue the process
recursively for each of the sons. Using this recursive prior the suffix tree transducers, we
can calculate the prediction of the mixture at step n in time that is linear in n, as follows,

aie(Yn) + (1 - a) (aixn(Yn) + (1- a) (aixn_\xn(Yn) + (1 - a) ...
Therefore, the prediction time of a single symbol is bounded by the maximal depth of T,
or the length of the input sequence if T is infinite. Denote by 1'8 (Yn) the prediction of the
mixture of subtrees rooted at s, and let Leaves(T) be the set of leaves of T . The above

Adaptive Mixture of Probabilistic Transducers 383

sum equals to 'Ye(Yn), and can be evaluated recursively as follows,1

'Y3(Yn) = { 13(Yn) _ S E Le~ves(T) ()
a I3 (Yn) + (I - a)r(X n_I.I.3)(Yn) otherwise I

For example, given that the input sequence is ... ,0, 1, 1,0, then the probabilities of the
mixtures of subtrees for the tree depicted on the left part of Fig. 1, for Yn = b and given
that a = 1/2, are, 'Yllo(b) = 0.4 , 'YlO(b) = 0.5 . 11O(b) + 0.5 . 0.4 = 0.3 , 'Yo(b) =
0.5 . lo(b) + 0.5 ·0.3 = 0.25, 'Ye(b) = 0.5 . le(b) + 0.5 ·0.25 = 0.25.

3 An Online Learning Algorithm

We now describe an efficient learning algorithm for a mixture of suffix tree transducers.
The learning algorithm uses the recursive priors and the evidence to efficiently update
the posterior weight of each possible subtree. In this section we assume that the output
probability functions are known. Hence, we need to evaluate the following,

~ P(Yn IT')P(T'I(XI, YI), ... ,(Xn_l, Yn-t)
T'ESub(T)

def ~ P(Yn IT')Pn (T') (2)
T'ESub(T)

where Pn(T') is the posterior weight of T'. Direct calculation of the above sum requires
exponential time.. However, using the idea of recursive calculation as in Equ. (1) we
can efficiently calculate the prediction of the mixture. Similar to the definition of the
recursive prior a, we define qn (s) to be the posterior weight of a node S compared to the
mixture of all nodes below s. We can compute the prediction of the mixture of suffix tree
transducers rooted at s by simply replacing the prior weight a with the posterior weight,
qn-l (s), as follows,

_ () _ { 13(Yn) S E Leaves(T)
13 Yn - qn-I(S)r3(Yn) + (1 - qn-l(S»'Y(X n _I.I.3)(Yn) otherwise

In order to update qn(s) we introduce one more variable, denoted by rn(s).
ro(s) = 10g(a/(1 - a» for all s, rn(s) is updated as follows,

rn(s) = rn-l(s) + log(/3(Yn» -log('YXn_I.13(Yn» .

, (3)

Setting

(4)

Therefore, rn(s) is the log-likelihood ratio between the prediction of s and the prediction
of the mixture of all nodes below s in T. The new posterior weights qn (s) are calculated
from rn(s),

(5)

In summary, for each new observation pair, we traverse the tree by following the path that
corresponds to the input sequence x n X n -I X n _ 2 .. . The predictions of each sub-mixture are
calculated using Equ. (3). Given these predictions the posterior weights of each sub-mixture
are updated using Equ. (4) and Equ. (5). Finally, the probability of Yn induced by the whole
mixture is the prediction propagated out of the root node, as stated by Lemma 3.1.

Lemma3.1 LT'ESub(T) P(YnlT')Pn(T') = 'Ye(Yn).

Let Lossn (T) be the logarithmic loss (negative log-likelihood) of a suffix tree transducer T
after n input-output pairs. That is, Lossn(T) = L7=1 -log(P(YiIT». Similarly, the loss

1 A similar derivation still holds even if there is a different prior 0'. at each node s of T. For the
sake of simplicity we assume that 0' is constant.

384 Y. SINGER

of the mixture is defined to be, Lossr;:ix = 2:~=1 -log(.ye(yd). The advantage of using
a mixture of suffix tree transducers over a single suffix tree is due to the robustness of the
solution, in the sense that the prediction of the mixture is almost as good as the prediction
of the best suffix tree in the mixture.

Theorem 1 Let T be a (possibly infinite) suffix tree transducer, and let
(Xl, yd, .. . , (xn, Yn) be any possible sequence of input-output pairs. The loss of the
mixture is at most, Lossn(T') -log(Po(T'»,Jor each possible subtree T'. The running
time of the algorithm is D n where D is the maximal depth ofT or n2 when T is infinite.

The proof is based on a technique introduced in [4]. Note that the additional loss is constant,
hence the normalized loss per observation pair is, Po(T')/n, which decreases like O(~).

Given a long sequence of input-output pairs or many short sequences, the structure of the
suffix tree transducer is inferred as well. This is done by updating the output functions, as
described in the next section, while adding new branches to the tree whenever the suffix
of the input sequence does not appear in the current tree. The update of the weights,
the parameters, and the structure ends when the maximal depth is reached, or when the
beginning of the input sequence is encountered.

4 Parameter Estimation

In this section we describe how the output probability functions are estimated. Again, we
devise an online scheme. Denote by C;'(y) the number of times the output symbol y was
observed out of the n times the node s was visited. A commonly used estimator smoothes
each count by adding a constant (as follows,

(6)

The special case of (= ~ is termed Laplace's modified rule of succession or the add~
estimator. In [9], Krichevsky and Trofimov proved that the loss of the add~ estimator, when
applied sequentially, has a bounded logarithmic loss compared to the best (maximum­
likelihood) estimator calculated after observing the entire input-output sequence. The
additional loss of the estimator after n observations is, 1/2(II:out l - 1) log(n) + lI:outl-l.
When the output alphabet I:out is rather small, we approximate "y 8 (y) by 78 (y) using Equ. (6)
and increment the count of the corresponding symbol every time the node s is visited. We
predict by replacing "y with its estimate 7 in Equ. (3). The loss of the mixture with estimated
output probability functions, compared to any subtree T' with known parameters, is now
bounded as follows,

LOSS,:ix ~ Lossn(T') -log(Po(T')) + 1/2IT'1 (Il:outl-l) log(n/IT'I) + IT'I (Il:outl-l),

where IT'I is the number of leaves in T'. This bound is obtained by combining the bound
on the prediction of the mixture from Thm. 1 with the loss of the smoothed estimator while
applying Jensen's inequality [3].

When lI:out 1 is fairly large or the sample size if fairly small, the smoothing of the output
probabilities is too crude. However, in many real problems, only a small subset of the
output alphabet is observed in a given context (a node in the tree). For example, when
mapping phonemes to phones [II], for a given sequence of input phonemes the phones that
can be pronounced is limited to a few possibilities. Therefore, we would like to devise an
estimation scheme that statistically depends on the effective local alphabet and not on the
whole alphabet. Such an estimation scheme can be devised by employing again a mixture
of models, one model for each possible subset I:~ut of I:out . Although there are 211:0 .. ,1
subsets of I:out, we next show that if the estimators depend only on the size of each subset
then the whole mixture can be maintained in time linear in lI:out I.

Adaptive Mixture of Probabilistic Transducers 385

Denote by .y~ (YIII:~ut 1 = i) the estimate of 'Y~ (y) after n observations given that the
alphabet I:~t is of size i. Using the add~ estimator, .y~(YIII:~utl = i) = (C~(y) +
1/2)/(n + i/2). Let I:~ut(s) be the set of different output symbols observed at node s, i.e.

I:~ut(s) = {u 1 u = Yi", s = (xi"-I~I+1' .. . ,Xi,,), 1 $ k $ n} ,
and define I:0 (s) to be the empty set There are (IIo.'I-II~.,(~)I) possible alphabets of out . i-II:.,(~)I

size i. Thus, the prediction of the mixture of all possible subsets of I:out is,

An() = I~I (lI:outl- 1I:~ut(s)l) ':l An(I·)
i~ Y L...J . _ lI:n (s)1 w1 'Y~ Y J ,

j=II:.,(~)1 J out
(7)

where wi is the posterior probability of an alphabet of size i. Evaluation of this sum
requires O(II:01.lt I) operations (and not 0(2IIo.,1 ». We can compute Equ. (7) in an online
fashion as follows. Let,

(lI:01.l tl- 1I:~ut(s)l) 0 TIn Ak-l(. 10)
0_ lI:n ()I W, 'Y8 y,,, ~
2 out s k=l

(8)

Without loss of generality, let us assume a uniform prior for the possible alphabet sizes.
Then,

Po(I:~ut) = Po(II:~1.Itl = i) ~ w? = 1/ (I I:01.l t1 (lI::utl)) 0

Thus, for all i ~(i) = 1/II:01.ltl. ~+1 (i) is updated from ~(i) as follows,

m+l (0) _ m (0) {~:(';'j;')+'/2
1 ~ 2 - 1 ~ 2 X n+I/2

i-II~y,(~)1 ~
IIo.,I-II:.,(8)1 n+i/2

if 1I:~ti/(s)1 > i
if 1I:~titl(s)1 $ i and Yi,,+1 E I:~1.It(s)
if 1I:~titl(s)1 $ i and Yi,,+1 ¢ I:~ut(s)

Informally: If the number of different symbols observed so far exceeds a given size then all
alphabets of this size are eliminated from the mixture by slashing their posterior probability
to zero. Otherwise, if the next symbol was observed before, the output probability is the
prediction of the addi estimator. Lastly, if the next symbol is entirely new, we need to sum
the predictions of all the alphabets of size i which agree on the first 1I:~1.It(s)1 and Yi,,+1 is
one of their i - 1I:~1.It(s)1 (yet) unobserved symbols. Funhermore, we need to multiply by
the apriori probability of observing Yi ,,+10 Assuming a uniform prior over the unobserved
symbols this probability equals to 1/(II:01.lt 1 - 1I:~1.It(s)l). Applying Bayes rule again, the
prediction of the mixture of all possible subsets of the output alphabet is,

IIo." IIo.,1
.y~(Yin+l) = 2: ~+l(i) / 2: ~(i) ° (9)

i=l i=l

Applying twice the online mixture estimation technique, first for the structure and then
for the parameters, yields an efficient and robust online algorithm. For a sample of size
n, the time complexity of the algorithm is DII:01.ltln (or lI:01.ltln2 if 7 is infinite). The
predictions of the adaptive mixture is almost as good as any suffix tree transducer with any
set of parameters. The logarithmic loss of the mixture depends on the number of non-zero
parameters as follows,

Lossr;:ix $ Lossn (7') -log(Po(7'» + 1/21Nz log(n) + 0(17'III:01.ltl) ,

where lNz is the number of non-zero parameters of the transducer 7'0 If lNz ~ 17'III:out l
then the performance of the above scheme, when employing a mixture model for the
parameters as well, is significantly better than using the add~ rule with the full alphabet.

386 Y. SINGER

5 Evaluation and Applications

In this section we briefly present evaluation results of the model and its learning algorithm.
We also discuss and present results obtained from learning syntactic structure of noun
phrases. We start with an evaluation of the estimation scheme for a multinomial source.

In order to check the convergence of a mixture model for a multinomial source, we simulated
a source whose output symbols belong to an alphabet of size 10 and set the probabilities of
observing any of the last five symbols to zero. Therefore, the actual alphabet is of size 5.
The posterior probabilities for the sum of all possible subsets of I:out of size i (1 :::; i :::; 10)
were calculated after each iteration. The results are plotted on the left part of Fig. 2. The
very first observations rule out alphabets of size lower than 5 by slashing their posterior
probability to zero. After few observations, the posterior probability is concentrated around
the actual size, yielding an accurate online estimate of the multinomial source.

The simplicity of the learning algorithm and the online update scheme enable evaluation of
the algorithm on millions of input-output pairs in few minutes. For example, the average
update time for a suffix tree transducer of a maximal depth 10 when the output alphabet
is of size 4 is about 0.2 millisecond on a Silicon Graphics workstation. A typical result is
shown in Fig. 2 on the right. In the example, I:out = I:in = {I, 2, 3,4}. The description
of the source is as follows. If Xn ~ 3 then Yn is uniformly distributed over I:out. otherwise
(xn :::; 2) Yn = Xn-S with probability 0.9 and Yn-S = 4 - Xn-S with probability 0.1. The
input sequence Xl, X2, .•• was created entirely at random. This source can be implemented
by a sparse suffix tree transducer of maximal depth 5. Note that the actual size of the
alphabet is only 2 at half of the leaves of the tree. We used a suffix tree transducer of
maximal depth 20 to learn the source. The negative of the logarithm of the predictions
(normalized per symbol) are shown for (a) the true source, (b) a mixture of suffix tree
transducers and their parameters, (c) a mixture of only the possible suffix tree transducers
(the parameters are estimated using the addl scheme), and (d) a single (overestimated)
model of depth 8. Clearly, the mixture mode? converge to the entropy of the source much
faster than the single model. Moreover, employing twice the mixture estimation technique
results in an even faster convergence.

UbUI "b'~1 - "I - "I : .:~.: ~.:~.:~
.,. • ,. I ,. • 1. I" I,.

0.1 t t t It II •••• "~'··b"b"'b"b'·b -.
• • • • • 0

I" I" I" I" I " • "

'b'·L'··LUL"~'·~
... •• " •• II •• I" • II • " •

•• • I
• tI I 1. I" I,. I " I"

"I ... "I -. "I -_ ':1 -. "I .. _ "I .. _ ,:~,:~,:~,~,:~,:~
I" I 10 I to .,. I " 5 ,.

1.B

.g 1.6
Ii:

- (d) Single Overestimated Model
- - (e) Mixture 01 Models .--- (bl MiX1ure 01 Models and Parameters
.. (a Source

50 100 150 200 250 300 350 400 450 500
Number 01 Examples

Figure 2: Left: Example of the convergence of the posterior probability of a mixture model for
a multinomial source with large number of possible outcomes when the actual number of observed
symbols is small. Right: performance comparison of the predictions of a single model, two mixture
models and the true underlying transducer.

We are currently exploring the applicative possibilities of the algorithm. Here we briefly
discuss and demonstrate how to induce an English noun phrase recognizer. Recognizing
noun phrases is an important task in automatic natural text processing, for applications
such as information retrieval, translation tools and data extraction from texts. A common
practice is to recognize noun phrases by first analyzing the text with a part-of-speech tagger,
which assigns the appropriate part-of-speech (verb, noun, adjective etc.) for each word in

Adaptive Mixture of Probabilistic Transducers 387

context. Then, noun phrases are identified by manually defined regular expression patterns
that are matched against the part-of-speech sequences. We took an alternative route by
building a suffix tree transducer based on a labeled data set from the UPENN tree-bank
corpus. We defined I:in to be the set of possible part-of-speech tags and set I:out = {O, I},
where the output symbol given its corresponding input symbol (the part-of-speech tag of
the current word) is 1 iff the word is part of a noun phrase. We used over 250, 000 marked
tags and tested the performance on more than 37 , 000 tags. The test phase was performed
by freezing the model structure, the mixture weights and the estimated parameters. The
suffix tree transducer was of maximal depth 15 hence very long phrases can be statistically
identified. By tresholding the output probability we classified the tags in the test data
and found that less than 2.4% of the words were misclassified. A typical result is given
in Table 1. We are currently investigating methods to incorporate linguistic knowledge
into the model and its learning algorithm and compare the performance of the model with
traditional techniques.

Scmrmc:e Tcm Smith group cru..f cxcc:utiYe of U.K. metal.
pos tag PNP PNP NN NN NN IN PNP NNS
Class 1 1 0 1 1 1 0 1 1
Predi ction 0.99 0.99 0.01 0.98 0.98 0.98 0.02 0.99 0.99
Sentence ODd industrial material. mabr will bo:cune chainnon
P~S tag CC JJ NNS NN MD VB NN
Class 1 1 1 1 0 0 0 1 0
Prediction 0.67 0.96 0.99 0.96 0.03 0.03 0.01 0.81 0.01

Table 1: Extraction of noun phrases using a suffix tree transducer. In this typical example, two long
noun phrases were identified correctly with high confidence.

Acknowledgments
Thanks to Y. Bengio, Y. Freund, F. Pereira, D. Ron. R. Schapire. and N. Tishby for helpful discussions.
The work on syntactic structure induction is done in collaboration with I. Dagan and S. Engelson.
This work was done while the author was at the Hebrew University of Jerusalem.

References
[1] Y. Bengio and P. Fransconi. An input output HMM architecture. InNIPS-7. 1994.

[2] N. Cesa-Bianchi. Y. Freund. D. Haussler. D.P. Helmbold, R.E. Schapire, and M. K. Warmuth.
How to use expert advice. In STOC-24, 1993.

[3] T.M. Cover and J .A. Thomas. Elements of information theory. Wiley. 1991.

[4] A. DeSantis. G. Markowski. and M.N. Wegman. Learning probabilistic prediction functions.
In Proc. of the 1st Wksp. on Comp. Learning Theory. pages 312-328,1988.

[5] C.L. Giles. C.B. Miller, D. Chen, G.Z. Sun, H.H. Chen. and Y.C. Lee. Learning and extracting
finite state automata with second-orderrecurrent neural networks. Neural Computation. 4:393-
405.1992.

[6] D. Haussler and A. Barron. How well do Bayes methods work for on-line prediction of {+ 1, -1 }
values? In The3rdNEC Symp . on Comput. andCogn., 1993.

[7] D.P. HeImbold and R.E. Schapire. Predicting nearly as well as the best pruning of a decision
tree. In COLT-8. 1995.

[8] R.A. Jacobs, M.1. Jordan. SJ. NOWlan, and G.E. Hinton. Adaptive mixture of local experts.
Neural Computation, 3:79-87. 1991.

[9] R.E. Krichevsky and V.K. Trofimov. The performance of universal encoding. IEEE Trans. on
Inform. Theory. 1981.

[10] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and
Computation, 108:212-261,1994.

[11] M.D. Riley. A statistical model for generating pronounication networks. In Proc. of IEEE Con/.
on Acoustics. Speech and Signal Processing. pages 737-740.1991.

[12] D. Ron. Y. Singer, and N. Tishby. The power of amnesia. In NIPS-6. 1993.

[13] F.MJ. Willems. Y.M. Shtarkov. and TJ. Tjalkens. The context tree weighting method: Basic
properties. IEEE Trans. Inform. Theory. 41(3):653-664.1995.

