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Abstract 

A neurally-inspired visual object recognition system is described 
called SEEMORE, whose goal is to identify common objects from 
a large known set-independent of 3-D viewiag angle, distance, 
and non-rigid distortion. SEEMORE's database consists of 100 ob­
jects that are rigid (shovel), non-rigid (telephone cord), articu­
lated (book), statistical (shrubbery), and complex (photographs of 
scenes). Recognition results were obtained using a set of 102 color 
and shape feature channels within a simple feedforward network ar­
chitecture. In response to a test set of 600 novel test views (6 of 
each object) presented individually in color video images, SEEMORE 
identified the object correctly 97% of the time (chance is 1%) using 
a nearest neighbor classifier. Similar levels of performance were 
obtained for the subset of 15 non-rigid objects. Generalization be­
havior reveals emergence of striking natural category structure not 
explicit in the input feature dimensions. 

1 INTRODUCTION 

In natural contexts, visual object recognition in humans is remarkably fast, reliable, 
and viewpoint invariant. The present approach to object recognition is "view-based" 
(e.g. see [Edelman and Bulthoff, 1992]), and has been guided by three main dogmas. 

First, the "natural" object recognition problem faced by visual animals involves a 
large number of objects and scenes, extensive visual experience, and no artificial 
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distinctions among object classes, such as rigid, non-rigid, articulated, etc. 

Second, when an object is recognized in the brain, the "heavy lifting" is done by 
the first wave of action potentials coursing from the retina to the inferotemporal 
cortex (IT) over a period of 100 ms [Oram and Perrett, 1992]. The computations 
carried out during this time can be modeled as a shallow but very wide feedforward 
network of simple image filtering operations. Shallow means few processing levels, 
wide means a sparse, high-dimensional representation combining cues from multiple 
visual submodalities, such as color, texture, and contour [Tanaka et al., 1991]. 

Third, more complicated processing mechanisms, such as those involving focal at­
tention, segmentation, binding, normalization, mental rotation, dynamic links, parts 
recognition, etc., may exist and may enhance recognition performance but are not 
necessary to explain rapid, robust recognition with objects in normal visual situ­
ations. 

In this vein, the main goal of this project has been to explore the limits of perform­
ance of a shallow-but very wide-feedforward network of simple filtering operations 
for viewpoint-invariant 3-D object recognition, where the filter "channels" them­
selves have been loosely modeled after the shape- and color-sensitive visual response 
properties seen in the higher levels of the primate visual system [Tanaka et al., 1991]. 
Architecturally similar approaches to vision have been most often applied in the do­
main of optical character recognition [Fukushima et al., 1983, Le Cun et al., 1990]. 
SEEMORE'S architecture is also similar in spirit to the color histogramming approach 
of [Swain and Ballard, 1991], but includes spatially-structured features that provide 
also for shape-based generalization. 

Figure 1: The database includes 100 objects of many different types, including rigid 
(soup can), non-rigid (necktie), statistical (bunch of grapes), and photographs of 
complex indoor and outdoor scenes. 
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2 SEEMORE'S VISUAL WORLD 

SEEMORE's database contains 100 common 3-D objects and photogaphs of scenes, 
each represented by a set of pre-segmented color video images (fig. 1). The training 
set consisted of 12-36 views of each object as follows. For rigid objects, 12 training 
views were chosen at roughly 60° intervals in depth around the viewing sphere, and 
each view was then scaled to yield a total of three images at 67%, 100%, and 150%. 
Image plane orientation was allowed to vary arbitrarily. For non-rigid objects, 12 
training views were chosen in random poses. 

During a recognition trial, SEEMORE was required to identify novel test images of 
the database objects. For rigid objects, test images were drawn from the viewpoint 
interstices of the training set, excluding highly foreshortened views (e.g. bottom of 
can). Each test view could therefore be presumed to be correctly recognizable, but 
never closer than roughly 30-> in orientation in depth or 22% in scale to the nearest 
training view of the object, while position and orientation in the image plane could 
vary arbitrarily. For non-rigid objects, test images consisted of novel random poses. 
Each test view depicted the isolated object on a smooth background. 

2.1 FEATURE CHANNELS 

SEEMORE's internal representation of a view of an object is encoded by a set 
of feature channels. The ith channel is based on an elemental nonlinear filter 
fi(z, y, (h, (J2, .• . ), parameterized by position in the visual field and zero or more 
internal degrees of freedom. Each channel is by design relatively sensitive to changes 
in the image that are strongly related to object identity, such as the object's shape, 
color, or texture, while remaining relatively insensitive to changes in the image that 
are unrelated to object identity, such as are caused by changes in the object's pose. 
In practice, this invariance is achieved in a straightfOl'ward way for each channel by 
subsampling and summing the output of the elemental channel filter over the entire 
visual field and one or more of its internal degrees of freedom, giving a channel 
output Fi = Lx,y,(h , .. . fiO. For example, a particular shape-sensitive channel might 
"look" for the image-plane projections of right-angle corners, over the entire visual 
field, 360° of rotation in the image plane, 30° of rotation in depth, one octave in 
scale, and tolerating partial occlusion and/or slight misorientation of the elemental 
contours that define the right angle. In general, then, Fi may be viewed as a "cell" 
with a large receptive field whose output is an estimate of the number of occurences 
of distal feature i in the workspace over a large range of viewing parameters. 

SEEMORE'S architecture consists of 102 feature channels, whose outputs form an 
input vector to a nearest-neighbor classifer. Following the design of the individual 
channels, the channel vector F = {FI, ... F102} is (1) insensitive to changes in image 
plane position and orientation of the object, (2) modestly sensitive to changes in 
object scale, orientation in depth, or non-rigid deformation, but (3) highly sensitive 
to object "quality" as pertains to object identity. Within this representation, total 
memory storage for all views of an object ranged from 1,224 to 3,672 integers. 

As shown in fig . 2, SEEMORE's channels fall into in five groups: (1) 23 color chan­
nels, each of which responds to a small blob of color parameterized by "best" hue 
and saturation, (2) 11 coarse-scale intensity corner channels parameterized by open 
angle, (3) 12 "blob" features, parameterized by the shape (round and elongated) and 
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size (small, medium, and large) of bright and dark intensity blobs, (4) 24 contour 
shape features, including straight angles, curve segments of varying radius, and par­
allel and oblique line combinations, and (5) 16 shape/texture-related features based 
on the outputs of Gabor functions at 5 scales and 8 orientations. The implement­
ations of the channel groups were crude, in the interests of achieving a working, 
multiple-cue system with minimal development time. Images were grabbed using an 
off-the-shelf Sony S-Video Camcorder and Sun Video digitizing board. 
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Figure 2: SEEMORE's 102 channels fall into 5 groups, sensitive to (1) colors, (2) in­
tensity corners, (3) circular and elongated intensity blobs, (4) contour shape features, 
and (5) 16 oriented-energy and relative-orientation features based on the outputs of 
Gabor functions at several scales and orientations. 

3 RECOGNITION 

SEEMORE's recognition performance was assesed quantitatively as follows. A test 
set consisting of 600 novel views (100 objects x 6 views) was culled from the data­
base, and presented to SEEMORE for identification. It was noted empirically that 
a compressive transform on the feature dimensions (histogram values) led to im­
proved classification performance; prior to all learning and recognition operations, 
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Figure 3: Generalization using only shape-related channels. In each row, a novel 
test view is shown at far left. The sequence of best matching training views (one 
per object) is shown to right, in order of decreasing similarity. 

therefore, each feature value was replaced by its natural logarithm (0 values were 
first replaced with a small positive constant to prevent the logarithm from blowing 
up). For each test view, the city-block distance was computed to every training view 
in the database and the nearest neighbor was chosen as the best match. The log 
transform of the feature dimension:.; thus tied this distance to the ratios of individual 
feature values in two images rather than their differences. 

4 RESULTS 

Recognition time on a Sparc-20 was 1-2 minutes per view; the bulk of the time was 
devoted to shape processing, with under 2 seconds required for matching. 

Recognition results are reported as the proportion of test views that were correctly 
classified. Performance using all 102 channels for the 600 novel object views in the 
intact test set was 96.7%; the chance rate of correct classification was 1%. Across 
recognition conditions, second-best matches usually accounted for approximately 
half the errors. Results were broken down in terms of the separate contributions 
to recognition performance of color-related vs. shape-related feature channels. Per­
formance using only the 23 color-related channels was 87.3%, and using only the 
79 shape-related channels was 79.7%. Remarkably, very similar performance figures 
were obtained for the subset of 90 test views of the non-rigid objects, which included 
several scarves, a bike chain, necklace, belt, sock, necktie, maple-leaf cluster, bunch 
of grapes, knit bag, and telephone cord. Thus, a novel random configuration of a 
telephone cord was as easily recognized as a novel view of a shovel. 
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5 GENERALIZATION BEHAVIOR 

Numerical indices of recognition performance are useful, but do not explicitly convey 
the similarity structure of the underlying feature space. A more qualitative but 
extremely informative representation of system performance lies in the sequence of 
images in order of increasing distance from a test view. Records of this kind are 
shown in fig. 3 for trials in which only shape-related channels were used. In each, a 
test view is shown at the far left, and the ordered set of nearest neighbors is shown 
to the right. When a test view's nearest neighbor (second image from left) was not 
the correct match, the trial was classified as an error. 

As shown in row (1), a view of a book is judged most similar to a series of other books 
(or the bottom of a rectangular cardboard box)---each a view of a rectangular object 
with high-frequency surface markings. A similar sequence can be seen in subsequent 
rows for (2) a series of cans, each a right cylinder with detailed surface markings, (3) 
a series of smooth, not-quite-round objects, (4) a series of photographs of complex 
scenes, and (5) a series of dinosaurs (followed by a teddy bear). In certain cases, 
SEEMORE'S shape-related similarity metric was more difficult to visually interpret 
or verbalize (last two rows), or was different from that of a human observer. 

6 DISCUSSION 

The ecology of natural object vision gives rise to an apparent contradiction: (i) 
generalization in shape-space must in some cases permit an object whose global 
shape has been grossly perturbed to be matched to itself, such as the various tangled 
forms of a telephone cord, but (ii) quasi-rigid basic-level shape categories (e.g. chair, 
shoe, tree) must be preserved as well, and distinguished from each other. 

A partial It wi uti on to this conundrum lies in the observation tbat locally-cumputed 
shape statistics are in large part preserved under the global shape deformations that 
non-rigid common objects (e.g. scarf, bike-chain) typically undergo. A feature-space 
representation with an emphasis on locally-derived shape channels will therefore 
exhibit a significant degree of invariance to global nonrigid shape deformations. The 
definition of shape similarity embodied in the present approach is that two objects 
are similar if they contain similar profiles (histograms) of their shape measures, 
which emphasize locality. One way of understanding the emergence of global shape 
categories, then, such as "book", "can", "dinosaur", etc., is to view each as a set of 
instances of a single canonical object whose local shape statistics remain quasi-stable 
as it is warped into various global forms. In many cases, particularly within rigid 
object categories, exemplars may share longer-range shape statistics as well. 

It is useful to consider one further aspect of SEEMORE'S shape representation, per­
taining to an apparent mismatch between the simplicity of the shape-related fea­
ture channels and the complexity of the shape categories that can emerge from 
them. Specifically, the order of binding of spatial relations within SEEMORE's shape 
channels is relatively low, i.e. consisting of single simple open or closed curves, 
or conjunctions of two oriented contours or Gabor patches. The fact that shape 
categories, such as "photographs of rooms", or "smooth lumpy objects", cluster 
together in a feature space of such low binding order would therefore at first seem 
surprising. This phenomenon relates closely to the notion of "wickelfeatures" (see 
[Rumelhart and McClelland, 1986], ch. 18), in which features (relating to phonemes) 
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that bind spatial information only locally are nonetheless used to represent global 
patterns (words) with little or no residual ambiguity. 

The pre segmentation of objects is a simplifying assumption that is clearly invalid in 
the real world. The advantage of the assumption from a methodological perspective 
is that the object similarity structure induced by the feature dimensions can be 
studied independently from the problem of segmenting or indexing objects imbedded 
in complex scenes. In continuing work, we are pursuing a leap to sparse very-high­
dimensional space (e.g. 10,000 dimensions), whose advantages for classification in 
the presence of noise (or clutter) have been discussed elsewhere [Kanerva, 1988, 
Califano and Mohan, 1994]. 

Acknowledgements 

Thanks to J6zsef Fiser for useful discusf!ions and for development of the Gabor-based 
channel set, to Dan Lipofsky and Scott Dewinter for helping in the construction of 
the image database, and to Christof Koch for providing support at Caltech where 
this work was initiated. This work was funded by the Office of Naval Research, and 
the McDonnell-Pew Foundation. 

References 

[Califano and Mohan, 1994] Califano, A. and Mohan, R. (1994). Multidimensional 
indexing for recognizing visual shapes. IEEE Trans. on PAMI, 16:373-392. 

[Edelman and Bulthoff, 1992] Edelman, S. and Bulthoff, H. (1992). Orientation de­
pendence in the recognition of familiar and novel views of three-dimensional ob­
jects. Vision Res., 32:2385-2400. 

[Fukushima et al., 1983] Fukushima, K., Miyake, S., and Ito, T. (1983). Neocog­
nitron: A neural network model for a mechanism of visual pattern recognition. 
IEEE Trans. Sys. Man & Cybernetics, SMC-13:826-834. 

[Kanerva, 1988] Kanerva, P. (1988). Sparse distributed memory. MIT Press, Cam­
bridge, MA. 

[Le Cun et al., 1990] Le Cun, Y., Matan, 0., Boser, B., Denker, J., Henderson, D., 
Howard, R., Hubbard, W., Jackel, L., and Baird, H. (1990). Handwritten zip 
code recognition with multilayer networks. In Proc. of the 10th Int. Conf. on 
Patt. Rec. IEEE Computer Science Press. 

[Oram and Perrett, 1992] Oram, M. and Perrett, D. (1992). Time course of neural 
responses discriminating different views of the face and head. J. Neurophysiol., 
68(1) :70-84. 

[Rumelhart and McClelland, 1986] Rumelhart, D. and McClelland, J. (1986). Par­
allel distributed processing. MIT Press, Cambridge, Massachusetts. 

[Swain and Ballard, 1991] Swain, M. and Ballard, D. (1991). Color indexing. Int. 
J. Computer Vision, 7:11-32. 

[Tanaka et al., 1991] Tanaka, K., Saito, H., Fukada, Y., and Moriya, M. (1991). 
Coding visual images of objects in the inferotemporal cortex of the macaque 
monkey. J. Neurophysiol., 66:170-189. 





PART VIII 
APPLICATIONS 




