
Using Pairs of Data-Points to Define
Splits for Decision Trees

Geoffrey E. Hinton
Department of Computer Science

University of Toronto
Toronto, Ontario, M5S lA4, Canada

hinton@cs.toronto.edu

Michael Revow
Department of Computer Science

University of Toronto
Toronto, Ontario, M5S lA4, Canada

revow@cs.toronto.edu

Abstract

Conventional binary classification trees such as CART either split
the data using axis-aligned hyperplanes or they perform a compu­
tationally expensive search in the continuous space of hyperplanes
with unrestricted orientations. We show that the limitations of the
former can be overcome without resorting to the latter. For every
pair of training data-points, there is one hyperplane that is orthog­
onal to the line joining the data-points and bisects this line. Such
hyperplanes are plausible candidates for splits. In a comparison
on a suite of 12 datasets we found that this method of generating
candidate splits outperformed the standard methods, particularly
when the training sets were small.

1 Introduction

Binary decision trees come in many flavours, but they all rely on splitting the set of
k-dimensional data-points at each internal node into two disjoint sets. Each split is
usually performed by projecting the data onto some direction in the k-dimensional
space and then thresholding the scalar value of the projection. There are two
commonly used methods of picking a projection direction. The simplest method is
to restrict the allowable directions to the k axes defined by the data. This is the
default method used in CART [1]. If this set of directions is too restrictive, the
usual alternative is to search general directions in the full k-dimensional space or
general directions in a space defined by a subset of the k axes.

Projections onto one of the k axes defined by the the data have many advantages

508 G. E. HINTON, M. REVOW

over projections onto a more general direction:

1. It is very efficient to perform the projection for each of the data-points. We
simply ignore the values of the data-point on the other axes.

2. For N data-points, it is feasible to consider all possible axis-aligned pro­
jections and thresholds because there are only k possible projections and
for each of these there are at most N - 1 threshold values that yield dif­
ferent splits. Selecting from a fixed set of projections and thresholds is
simpler than searching the k-dimensional continuous space of hyperplanes
that correspond to unrestricted projections and thresholds.

3. Since a split is selected from only about N k candidates, it takes only about
log2 N + log2 k bits to define the split. So it should be possible to use many
more of these axis-aligned splits before overfitting occurs than if we use more
general hyperplanes. If the data-points are in general position, each subset
of size k defines a different hyperplane so there are N!/k!(N - k)! distinctly
different hyperplanes and if k < < N it takes approximately k log2 N bits
to specify one of them.

For some datasets, the restriction to axis-aligned projections is too limiting. This
is especially true for high-dimensional data, like images , in which there are strong
correlations between the intensities of neighbouring pixels. In such cases, many
axis-aligned boundaries may be required to approximate a planar boundary that
is not axis-aligned, so it is natural to consider unrestricted projections and some
versions of the CART program allow this. Unfortunately this greatly increases the
computational burden and the search may get trapped in local minima. Also signif­
icant care must be exercised to avoid overfitting. There is, however, an intermediate
approach which allows the projections to be non-axis-aligned but preserves all three
of the attractive properties of axis-aligned projections: It is trivial to decide which
side of the resulting hyperplane a given data-point lies on; the hyperplanes can be
selected from a modest-sized set of sensible candidates; and hence many splits can
be used before overfitting occurs because only a few bits are required to specify each
split.

2 Using two data-points to define a projection

Each pair of data-points defines a direction in the data space. This direction is a
plausible candidate for a projection to be used in splitting the data, especially if
it is a classification task and the two data-points are in different classes. For each
such direction, we could consider all of the N - 1 possible thresholds that would
give different splits, or, to save time and reduce complexity, we could only consider
the threshold value that is halfway between the two data-points that define the
projection. If we use this threshold value, each pair of data-points defines exactly
one hyperplane and we call the two data-points the "poles" of this hyperplane.

For a general k-dimensional hyperplane it requires O(k) operations to decide
whether a data-point, C, is on one side or the other. But we can save a factor
of k by using hyperplanes defined by pairs of data-points. If we already know the
distances of C from each of the two poles, A, B then we only need to compare

Using Pairs of Data Points to Define Splits for Decision Trees 509

B

A

Figure 1: A hyperplane orthogonal to the line joining points A and B. We can
quickly determine on which side a test point, G, lies by comparing the distances
AG and BG.

these two distances (see figure 1).1 So if we are willing to do O(kN2) operations to
compute all the pairwise distances between the data-points, we can then decide in
constant time which side of the hyperplane a point lies on.

As we are building the decision tree, we need to compute the gain in performance
from using each possible split at each existing terminal node. Since all the terminal
nodes combined contain N data-points and there are N(N - 1)/2 possible splits2

this takes time O(N3) instead of O(kN3). So the work in computing all the pairwise
distances is trivial compared with the savings.

Using the Minimum Description Length framework, it is clear that pole-pair splits
can be described very cheaply, so a lot of them can be used before overfitting occurs.
When applying MDL to a supervised learning task we can assume that the receiver
gets to see the input vectors for free. It is only the output vectors that need to be
communicated. So if splits are selected from a set of N (N -1) /2 possibilities that is
determined by the input vectors, it takes only about 210g2 N bits to communicate
a split to a receiver. Even if we allow all N - 1 possible threshold values along
the projection defined by two data-points, it takes only about 310g2 N bits. So the
number of these splits that can be used before overfitting occurs should be greater by
a factor of about k/2 or k/3 than for general hyperplanes. Assuming that k « N,
the same line of argument suggests that even more axis-aligned planes can be used,
but only by a factor of about 2 or 3.

To summarize, the hyperplanes planes defined by pairs of data-points are computa­
tionally convenient and seem like natural candidates for good splits. They overcome
the major weakness of axis-aligned splits and, because they can be specified in a
modest number of bits, they may be more effective than fully general hyperplanes
when the training set is small.

1 If the threshold value is not midway between the poles, we can still save a factor of k
but we need to compute (d~c - d1c)/2dAB instead of just the sign of this expression.

2Since we only consider splits in which the poles are in different classes, this number
ignores a factor that is independent of N.

510 G. E. HINTON, M. REVOW

3 Building the decision tree

We want to compare the "pole-pair" method of generating candidate hyperplanes
with the standard axis-aligned method and the method that uses unrestricted hy­
perplanes. We can see no reason to expect strong interactions between the method
of building the tree and the method of generating the candidate hyperplanes, but
to minimize confounding effects we always use exactly the same method of building
the decision tree.

We faithfully followed the method described in [1], except for a small modification
where the code that was kindly supplied by Leo Breiman used a slightly different
method for determining the amount of pruning.

Training a decision tree involves two distinct stages. In the first stage, nodes are
repeatedly split until each terminal node is "pure" which means that all of its data­
points belong to the same class. The pure tree therefore fits the training data
perfectly. A node is split by considering all candidate decision planes and choosing
the one that maximizes the decrease in impurity. Breiman et. al recommend using
the Gini index to measure impurity.3 If pUlt) is the probability of class j at node
t, then the Gini index is 1 - 2: j p2(jlt).

Clearly the tree obtained at the end of the first stage will overfit the data and so in
the second stage the tree is pruned by recombining nodes. For a tree, Ti , with ITil
terminal nodes we consider the regularized cost:

(1)

where E is the classification error and Q is a pruning parameter. In "weakest-link"
pruning the terminal nodes are eliminated in the order which keeps (1) minimal as
Q increases. This leads to a particular sequence, T = {TI' T2, ... Tk} of subtrees,
in which ITII > IT21 ... > ITkl. We call this the "main" sequence of subtrees because
they are trained on all of the training data.

The last remaining issue to be resolved is which tree in the main sequence to use.
The simplest method is to use a separate validation set and choose the tree size
that gives best classification on it. Unfortunately, many of the datasets we used
were too small to hold back a reserved validation set. So we always used 10-fold
cross validation to pick the size of the tree. We first grew 10 different subsidiary
trees until their terminal nodes were pure, using 9/10 of the data for training each of
them. Then we pruned back each of these pure subsidiary trees, as above, producing
10 sequences of subsidiary subtrees. These subsidiary sequences could then be used
for estimating the performance of each subtree in the main sequence. For each of
the main subtrees, Ti , we found the largest tree in each subsidiary sequence that
was no larger than Ti and estimated the performance of Ti to be the average of the
performance achieved by each subsidiary subtree on the 1/10 of the data that was
not used for training that subsidiary tree. We then chose the Ti that achieved the
best performance estimate and used it on the test set4. Results are expressed as

3Impurity is not an information measure but, like an information measure, it is mini­
mized when all the nodes are pure and maximized when all classes at each node have equal
probability.

4This differs from the conventional application of cross validation, where it is used to

Using Pairs of Data Points to Define Splits for Decision Trees 511

JR TR LV DB BC GL VW WN VH WV IS SN

Size (N) 150 215 345 768 683 163 990 178 846 2100 351 208
Classes (e) 3 3 2 2 2 2 11 3 4 3 2 2
Attributes (k) 4 5 6 8 9 9 10 13 18 21 34 60

Table 1: Summary of the datasets used.

the ratio of the test error rate to the baseline rate, which is the error rate of a tree
with only a single terminal node.

4 The Datasets

Eleven datasets were selected from the database of machine learning tasks main­
tained by the University of California at Irvine (see the appendix for a list of the
datasets used). Except as noted in the appendix, the datasets were used exactly
in the form of the distribution as of June 1993. All datasets have only continuous
attributes and there are no missing values.5 The synthetic "waves" example [1] was
added as a twelfth dataset.

Table 1 gives a brief description of the datasets. Datasets are identified by a two
letter abbreviation along the top. The rows in the table give the total number of
instances, number of classes and number of attributes for each dataset.

A few datasets in the original distribution have designated training and testing
subsets while others do not. To ensure regularity among datasets, we pooled all
usable examples in a given dataset, randomized the order in the pool and then
divided the pool into training and testing sets. Two divisions were considered. The
large training division had ~ of the pooled examples allocated to the training set
and ~ to the test set. The small training division had ~ of the data in the training
set and ~ in the test set.

5 Results

Table 2 gives the error rates for both the large and small divisions of the data,
expressed as a percentage of the error rate obtained by guessing the dominant
class.

In both the small and large training divisions of the datasets, the pole-pair method
had lower error rates than axis-aligned or linear cart in the majority of datasets
tested. While these results are interesting, they do not provide any measure of con­
fidence that one method performs better or worse than another. Since all methods
were trained and tested on the same data, we can perform a two-tailed McNemar
test [2] on the predictions for pairs of methods. The resulting P-values are given
in table 3. On most of the tasks, the pole-pair method is significantly better than
at least one of the standard methods for at least one of the training set sizes and
there are only 2 tasks for which either of the other methods is significantly better
on either training set size.

determine the best value of ex rather than the tree size
5In the Be dataset we removed the case identification number attribute and had to

delete 16 cases with missing values.

512 G. E. HINTON, M. REVOW

Database Small Train Large Train
cart linear pole cart linear pole

IR 14.3 14.3 4.3 5.6 5.6 5.6
TR 36.6 26.8 14.6 33.3 33.3 20.8
LV 88.9 100.0 100.0 108.7 87.0 97.8
DB 85.8 82.2 87.0 69.7 69.7 59.6
BC 12.8 14.1 8.3 15.7 12.0 9.6
GL 62.5 81.3 89.6 46.4 46.4 35.7
VW 31.8 37.7 30.0 21.4 26.2 19.2
WN 17.8 13.7 11.0 14.7 11.8 14.7
VH 42.5 46.5 44.2 36.2 43.9 40.7
WV 28.9 25.8 24.3 30.6 24.8 26.6
IS 44.0 31.0 41.7 21.4 23 .8 42.9
SN 65.2 71.2 48.5 48.4 45.2 48.4

Table 2: Relative error rates expressed as a percentage of the baseline rate on the
small and large training sets.

6 Discussion

We only considered hyperplanes whose poles were in different classes, since these
seemed more plausible candidates. An alternative strategy is to disregard class
membership, and consider all possible pole-pairs. Another variant of the method
arises depending on whether the inputs are scaled. We transformed all inputs so
that the training data has zero mean and unit variance. However, using unsealed
inputs and/or allowing both poles to have the same class makes little difference to
the overall advantage of the pole-pair method.

To summarize, we have demonstrated that the pole-pair method is a simple, effective
method for generating projection directions at binary tree nodes. The same idea of
minimizing complexity by selecting among a sensible fixed set of possibilities rather
than searching a continuous space can also be applied to the choice of input-to­
hidden weights in a neural network.

A Databases used in the study

IR - Iris plant database.
TR - Thyroid gland data.
LV - BUPA liver disorders.
DB - Pima Indians Diabetes.
BC - Breast cancer database from the University of Wisconsin Hospitals .
GL - Glass identification database. In these experiments we only considered the
classification into float/nonfloat processed glass, ignoring other types of glass.
VW - Vowel recognition.
WN - Wine recognition.
VH - Vehicle silhouettes.
WV - Waveform example, the synthetic example from [1].
IS - Johns Hopkins University Ionosphere database.
SN - Sonar - mines versus rocks discrimination. We did not control for aspect-angle.

Using Pairs of Data Points to Define Splits for Decision Trees 513

Small Training - Large Test

IR TR LV DB BC GL VW WN VH WV IS -SN

Axis- Pole .02 ~ .18 .46 .06 .02 .24 .15 .33 ,QQ.. .44 .07

Linear- Pole ~ .13 1.0 .26 ~ .30 .00 .41 .27 .17 .09 ~

Axis-Linear 1.0 .06 .18 .30 .40 J>O J>O .31 .08 .03 ~ .32

Large Training - Small Test

IR TR LV DB BC GL VW WN VH WV IS SN

Axis-Pole .75 .23 .29 :.Q!.. .11 .29 .26 .69 .14 .08 :02 .60

Linear-Pole .75 .23 .26 :.Q!.. .25 .30 J!!... .50 .25 .26 :os .50

Axis-Linear 1.0 1.0 .07 1.0 .29 .69 .06 .50 F3"" :.Q!. .50 .50

Table 3: P-Values using a two-tailed McNemar test on the small (top) and large
(bottom) training sets. Each row gives P-values when the methods in the left most
column are compared. A significant difference at the P = 0.05 level is indicated with
a line above (below) the P-value depending on whether the first (second) mentioned
method in the first column had superior performance. For example, in the top most
row, the pole-pair method was significantly better than the axis-aligned method on
the TR dataset.

Acknowledgments

We thank Leo Breiman for kindly making his CART code available to us. This
research was funded by the Institute for Robotics and Intelligent Systems and by
NSERC. Hinton is a fellow of the Canadian Institute for Advanced Research.

References

[1] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone. Classification and
regression trees. Wadsworth international Group, Belmont, California, 1984.

[2] J. L. Fleiss. Statistical methods for rates and proportions. Second edition. Wiley,
1981.

