
Using Pairs of Data-Points to Define 
Splits for Decision Trees 

Geoffrey E. Hinton 
Department of Computer Science 

University of Toronto 
Toronto, Ontario, M5S lA4, Canada 

hinton@cs.toronto.edu 

Michael Revow 
Department of Computer Science 

University of Toronto 
Toronto, Ontario, M5S lA4, Canada 

revow@cs.toronto.edu 

Abstract 

Conventional binary classification trees such as CART either split 
the data using axis-aligned hyperplanes or they perform a compu­
tationally expensive search in the continuous space of hyperplanes 
with unrestricted orientations. We show that the limitations of the 
former can be overcome without resorting to the latter. For every 
pair of training data-points, there is one hyperplane that is orthog­
onal to the line joining the data-points and bisects this line. Such 
hyperplanes are plausible candidates for splits. In a comparison 
on a suite of 12 datasets we found that this method of generating 
candidate splits outperformed the standard methods, particularly 
when the training sets were small. 

1 Introduction 

Binary decision trees come in many flavours, but they all rely on splitting the set of 
k-dimensional data-points at each internal node into two disjoint sets. Each split is 
usually performed by projecting the data onto some direction in the k-dimensional 
space and then thresholding the scalar value of the projection. There are two 
commonly used methods of picking a projection direction. The simplest method is 
to restrict the allowable directions to the k axes defined by the data. This is the 
default method used in CART [1]. If this set of directions is too restrictive, the 
usual alternative is to search general directions in the full k-dimensional space or 
general directions in a space defined by a subset of the k axes. 

Projections onto one of the k axes defined by the the data have many advantages 
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over projections onto a more general direction: 

1. It is very efficient to perform the projection for each of the data-points. We 
simply ignore the values of the data-point on the other axes. 

2. For N data-points, it is feasible to consider all possible axis-aligned pro­
jections and thresholds because there are only k possible projections and 
for each of these there are at most N - 1 threshold values that yield dif­
ferent splits. Selecting from a fixed set of projections and thresholds is 
simpler than searching the k-dimensional continuous space of hyperplanes 
that correspond to unrestricted projections and thresholds. 

3. Since a split is selected from only about N k candidates, it takes only about 
log2 N + log2 k bits to define the split. So it should be possible to use many 
more of these axis-aligned splits before overfitting occurs than if we use more 
general hyperplanes. If the data-points are in general position, each subset 
of size k defines a different hyperplane so there are N!/k!(N - k)! distinctly 
different hyperplanes and if k < < N it takes approximately k log2 N bits 
to specify one of them. 

For some datasets, the restriction to axis-aligned projections is too limiting. This 
is especially true for high-dimensional data, like images , in which there are strong 
correlations between the intensities of neighbouring pixels. In such cases, many 
axis-aligned boundaries may be required to approximate a planar boundary that 
is not axis-aligned, so it is natural to consider unrestricted projections and some 
versions of the CART program allow this. Unfortunately this greatly increases the 
computational burden and the search may get trapped in local minima. Also signif­
icant care must be exercised to avoid overfitting. There is, however, an intermediate 
approach which allows the projections to be non-axis-aligned but preserves all three 
of the attractive properties of axis-aligned projections: It is trivial to decide which 
side of the resulting hyperplane a given data-point lies on; the hyperplanes can be 
selected from a modest-sized set of sensible candidates; and hence many splits can 
be used before overfitting occurs because only a few bits are required to specify each 
split. 

2 Using two data-points to define a projection 

Each pair of data-points defines a direction in the data space. This direction is a 
plausible candidate for a projection to be used in splitting the data, especially if 
it is a classification task and the two data-points are in different classes. For each 
such direction, we could consider all of the N - 1 possible thresholds that would 
give different splits, or, to save time and reduce complexity, we could only consider 
the threshold value that is halfway between the two data-points that define the 
projection. If we use this threshold value, each pair of data-points defines exactly 
one hyperplane and we call the two data-points the "poles" of this hyperplane. 

For a general k-dimensional hyperplane it requires O( k) operations to decide 
whether a data-point, C, is on one side or the other. But we can save a factor 
of k by using hyperplanes defined by pairs of data-points. If we already know the 
distances of C from each of the two poles, A, B then we only need to compare 
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Figure 1: A hyperplane orthogonal to the line joining points A and B. We can 
quickly determine on which side a test point, G, lies by comparing the distances 
AG and BG. 

these two distances (see figure 1).1 So if we are willing to do O(kN2) operations to 
compute all the pairwise distances between the data-points, we can then decide in 
constant time which side of the hyperplane a point lies on. 

As we are building the decision tree, we need to compute the gain in performance 
from using each possible split at each existing terminal node. Since all the terminal 
nodes combined contain N data-points and there are N(N - 1)/2 possible splits2 

this takes time O(N3) instead of O(kN3). So the work in computing all the pairwise 
distances is trivial compared with the savings. 

Using the Minimum Description Length framework, it is clear that pole-pair splits 
can be described very cheaply, so a lot of them can be used before overfitting occurs. 
When applying MDL to a supervised learning task we can assume that the receiver 
gets to see the input vectors for free. It is only the output vectors that need to be 
communicated. So if splits are selected from a set of N (N -1) /2 possibilities that is 
determined by the input vectors, it takes only about 210g2 N bits to communicate 
a split to a receiver. Even if we allow all N - 1 possible threshold values along 
the projection defined by two data-points, it takes only about 310g2 N bits. So the 
number of these splits that can be used before overfitting occurs should be greater by 
a factor of about k/2 or k/3 than for general hyperplanes. Assuming that k « N, 
the same line of argument suggests that even more axis-aligned planes can be used, 
but only by a factor of about 2 or 3. 

To summarize, the hyperplanes planes defined by pairs of data-points are computa­
tionally convenient and seem like natural candidates for good splits. They overcome 
the major weakness of axis-aligned splits and, because they can be specified in a 
modest number of bits, they may be more effective than fully general hyperplanes 
when the training set is small. 

1 If the threshold value is not midway between the poles, we can still save a factor of k 
but we need to compute (d~c - d1c )/2dAB instead of just the sign of this expression. 

2Since we only consider splits in which the poles are in different classes, this number 
ignores a factor that is independent of N. 
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3 Building the decision tree 

We want to compare the "pole-pair" method of generating candidate hyperplanes 
with the standard axis-aligned method and the method that uses unrestricted hy­
perplanes. We can see no reason to expect strong interactions between the method 
of building the tree and the method of generating the candidate hyperplanes, but 
to minimize confounding effects we always use exactly the same method of building 
the decision tree. 

We faithfully followed the method described in [1], except for a small modification 
where the code that was kindly supplied by Leo Breiman used a slightly different 
method for determining the amount of pruning. 

Training a decision tree involves two distinct stages. In the first stage, nodes are 
repeatedly split until each terminal node is "pure" which means that all of its data­
points belong to the same class. The pure tree therefore fits the training data 
perfectly. A node is split by considering all candidate decision planes and choosing 
the one that maximizes the decrease in impurity. Breiman et. al recommend using 
the Gini index to measure impurity.3 If pUlt) is the probability of class j at node 
t, then the Gini index is 1 - 2: j p2(jlt). 

Clearly the tree obtained at the end of the first stage will overfit the data and so in 
the second stage the tree is pruned by recombining nodes. For a tree, Ti , with ITil 
terminal nodes we consider the regularized cost: 

(1) 

where E is the classification error and Q is a pruning parameter. In "weakest-link" 
pruning the terminal nodes are eliminated in the order which keeps (1) minimal as 
Q increases. This leads to a particular sequence, T = {TI' T2, ... Tk} of subtrees, 
in which ITII > IT21 ... > ITkl. We call this the "main" sequence of subtrees because 
they are trained on all of the training data. 

The last remaining issue to be resolved is which tree in the main sequence to use. 
The simplest method is to use a separate validation set and choose the tree size 
that gives best classification on it. Unfortunately, many of the datasets we used 
were too small to hold back a reserved validation set. So we always used 10-fold 
cross validation to pick the size of the tree. We first grew 10 different subsidiary 
trees until their terminal nodes were pure, using 9/10 of the data for training each of 
them. Then we pruned back each of these pure subsidiary trees, as above, producing 
10 sequences of subsidiary subtrees. These subsidiary sequences could then be used 
for estimating the performance of each subtree in the main sequence. For each of 
the main subtrees, Ti , we found the largest tree in each subsidiary sequence that 
was no larger than Ti and estimated the performance of Ti to be the average of the 
performance achieved by each subsidiary subtree on the 1/10 of the data that was 
not used for training that subsidiary tree. We then chose the Ti that achieved the 
best performance estimate and used it on the test set4. Results are expressed as 

3Impurity is not an information measure but, like an information measure, it is mini­
mized when all the nodes are pure and maximized when all classes at each node have equal 
probability. 

4This differs from the conventional application of cross validation, where it is used to 
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JR TR LV DB BC GL VW WN VH WV IS SN 

Size (N) 150 215 345 768 683 163 990 178 846 2100 351 208 
Classes (e) 3 3 2 2 2 2 11 3 4 3 2 2 
Attributes (k) 4 5 6 8 9 9 10 13 18 21 34 60 

Table 1: Summary of the datasets used. 

the ratio of the test error rate to the baseline rate, which is the error rate of a tree 
with only a single terminal node. 

4 The Datasets 

Eleven datasets were selected from the database of machine learning tasks main­
tained by the University of California at Irvine (see the appendix for a list of the 
datasets used). Except as noted in the appendix, the datasets were used exactly 
in the form of the distribution as of June 1993. All datasets have only continuous 
attributes and there are no missing values.5 The synthetic "waves" example [1] was 
added as a twelfth dataset. 

Table 1 gives a brief description of the datasets. Datasets are identified by a two 
letter abbreviation along the top. The rows in the table give the total number of 
instances, number of classes and number of attributes for each dataset. 

A few datasets in the original distribution have designated training and testing 
subsets while others do not. To ensure regularity among datasets, we pooled all 
usable examples in a given dataset, randomized the order in the pool and then 
divided the pool into training and testing sets. Two divisions were considered. The 
large training division had ~ of the pooled examples allocated to the training set 
and ~ to the test set. The small training division had ~ of the data in the training 
set and ~ in the test set. 

5 Results 

Table 2 gives the error rates for both the large and small divisions of the data, 
expressed as a percentage of the error rate obtained by guessing the dominant 
class. 

In both the small and large training divisions of the datasets, the pole-pair method 
had lower error rates than axis-aligned or linear cart in the majority of datasets 
tested. While these results are interesting, they do not provide any measure of con­
fidence that one method performs better or worse than another. Since all methods 
were trained and tested on the same data, we can perform a two-tailed McNemar 
test [2] on the predictions for pairs of methods. The resulting P-values are given 
in table 3. On most of the tasks, the pole-pair method is significantly better than 
at least one of the standard methods for at least one of the training set sizes and 
there are only 2 tasks for which either of the other methods is significantly better 
on either training set size. 

determine the best value of ex rather than the tree size 
5In the Be dataset we removed the case identification number attribute and had to 

delete 16 cases with missing values. 
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Database Small Train Large Train 
cart linear pole cart linear pole 

IR 14.3 14.3 4.3 5.6 5.6 5.6 
TR 36.6 26.8 14.6 33.3 33.3 20.8 
LV 88.9 100.0 100.0 108.7 87.0 97.8 
DB 85.8 82.2 87.0 69.7 69.7 59.6 
BC 12.8 14.1 8.3 15.7 12.0 9.6 
GL 62.5 81.3 89.6 46.4 46.4 35.7 
VW 31.8 37.7 30.0 21.4 26.2 19.2 
WN 17.8 13.7 11.0 14.7 11.8 14.7 
VH 42.5 46.5 44.2 36.2 43.9 40.7 
WV 28.9 25.8 24.3 30.6 24.8 26.6 
IS 44.0 31.0 41.7 21.4 23 .8 42.9 
SN 65.2 71.2 48.5 48.4 45.2 48.4 

Table 2: Relative error rates expressed as a percentage of the baseline rate on the 
small and large training sets. 

6 Discussion 

We only considered hyperplanes whose poles were in different classes, since these 
seemed more plausible candidates. An alternative strategy is to disregard class 
membership, and consider all possible pole-pairs. Another variant of the method 
arises depending on whether the inputs are scaled. We transformed all inputs so 
that the training data has zero mean and unit variance. However, using unsealed 
inputs and/or allowing both poles to have the same class makes little difference to 
the overall advantage of the pole-pair method. 

To summarize, we have demonstrated that the pole-pair method is a simple, effective 
method for generating projection directions at binary tree nodes. The same idea of 
minimizing complexity by selecting among a sensible fixed set of possibilities rather 
than searching a continuous space can also be applied to the choice of input-to­
hidden weights in a neural network. 

A Databases used in the study 

IR - Iris plant database. 
TR - Thyroid gland data. 
LV - BUPA liver disorders. 
DB - Pima Indians Diabetes. 
BC - Breast cancer database from the University of Wisconsin Hospitals . 
GL - Glass identification database. In these experiments we only considered the 
classification into float/nonfloat processed glass, ignoring other types of glass. 
VW - Vowel recognition. 
WN - Wine recognition. 
VH - Vehicle silhouettes. 
WV - Waveform example, the synthetic example from [1]. 
IS - Johns Hopkins University Ionosphere database. 
SN - Sonar - mines versus rocks discrimination. We did not control for aspect-angle. 
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Small Training - Large Test 

IR TR LV DB BC GL VW WN VH WV IS -SN 

Axis- Pole .02 ~ .18 .46 .06 .02 .24 .15 .33 ,QQ.. .44 .07 

Linear- Pole ~ .13 1.0 .26 ~ .30 .00 .41 .27 .17 .09 ~ 

Axis-Linear 1.0 .06 .18 .30 .40 J>O J>O .31 .08 .03 ~ .32 

Large Training - Small Test 

IR TR LV DB BC GL VW WN VH WV IS SN 

Axis-Pole .75 .23 .29 :.Q!.. .11 .29 .26 .69 .14 .08 :02 .60 

Linear-Pole .75 .23 .26 :.Q!.. .25 .30 J!!... .50 .25 .26 :os .50 

Axis-Linear 1.0 1.0 .07 1.0 .29 .69 .06 .50 F3"" :.Q!. .50 .50 

Table 3: P-Values using a two-tailed McNemar test on the small (top) and large 
(bottom) training sets. Each row gives P-values when the methods in the left most 
column are compared. A significant difference at the P = 0.05 level is indicated with 
a line above (below) the P-value depending on whether the first (second) mentioned 
method in the first column had superior performance. For example, in the top most 
row, the pole-pair method was significantly better than the axis-aligned method on 
the TR dataset. 
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