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Abstract 

A stability criterion for dynamic parameter adaptation is given. In 
the case of the learning rate of backpropagation, a class of stable 
algorithms is presented and studied, including a convergence proof. 

1 INTRODUCTION 

All but a few learning algorithms employ one or more parameters that control the 
quality of learning. Backpropagation has its learning rate and momentum param­
eter; Boltzmann learning uses a simulated annealing schedule; Kohonen learning 
a learning rate and a decay parameter; genetic algorithms probabilities, etc. The 
investigator always has to set the parameters to specific values when trying to solve 
a certain problem. Traditionally, the metaproblem of adjusting the parameters is 
solved by relying on a set of well-tested values of other problems or an intensive 
search for good parameter regions by restarting the experiment with different val­
ues. In this situation, a great deal of expertise and/or time for experiment design 
is required (as well as a huge amount of computing time). 

1.1 DYNAMIC PARAMETER ADAPTATION 

In order to achieve dynamic parameter adaptation, it is necessary to modify the 
learning algorithm under consideration: evaluate the performance of the parameters 
in use from time to time, compare them with the performance of nearby values, and 
(if necessary) change the parameter setting on the fly. This requires that there 
exist a measure of the quality of a parameter setting, called performance, with the 
following properties: the performance depends continuously on the parameter set 
under consideration, and it is possible to evaluate the performance locally, i. e., at 
a certain point within an inner loop of the algorithm (as opposed to once only at 
the end of the algorithm). This is what dynamic parameter adaptation is all about. 
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Dynamic parameter adaptation has several virtues. It is automatic; and there is no 
need for an extra schedule to find what parameters suit the problem best. When 
the notion of what the good values of a parameter set are changes during learning, 
dynamic parameter adaptation keeps track of these changes. 

1.2 EXAMPLE: LEARNING RATE OF BACKPROPAGATION 

Backpropagation is an algorithm that implements gradient descent in an error 
function E: IRn ~ llt Given WO E IRn and a fixed '" > 0, the iteration rule is 
WH1 = wt - ",V E(wt). The learning rate", is a local parameter in the sense that 
at different stages of the algorithm different learning rates would be optimal. This 
property and the following theorem make", especially interesting. 

Trade-off theorem for backpropagation. Let E: JR1l ~ IR be the error function of 
a neural net with a regular minimum at w· E IRn , i. e., E is expansible into a 
Taylor series about w· with vanishing gradient V E( w·) and positive definite Hessian 
matrix H(w·) . Let A denote the largest eigenvalue of H(w·). Then, in general, 
backpropagation with a fixed learning rate", > 2/ A cannot converge to w· . 

Proof. Let U be an orthogonal matrix that diagonalizes H(w·), i. e., D := 
UT H ( w·) U is diagonal. U sing the coordinate transformation x = UT (w - w·) 
and Taylor expansion, E(w) - E(w·) can be approximated by F(x) := xT Dx/2. 
Since gradient descent does not refer to the coordinate system, the asymptotic be­
havior of backpropagation for E near w· is the same as for F near O. In the latter 
case, backpropagation calculates the weight components x~ = x~(I- Dii",)t at time 
step t. The diagonal elements Dii are the eigenvalues of H(w·); convergence for all 
geometric sequences t 1-7 x~ thus requires", < 2/ A. I 

The trade-off theorem states that, given "', a large class of minima cannot be found, 
namely, those whose largest eigenvalue of the corresponding Hessian matrix is larger 
than 2/",. Fewer minima might be overlooked by using a smaller "', but then the 
algorithm becomes intolerably slow. Dynamic learning-rate adaptation is urgently 
needed for backpropagation! 

2 STABLE DYNAMIC PARAMETER ADAPTATION 

Transforming the equation for gradient descent, wt+l = wt - ",VE(wt), into a 
differential equation, one arrives at awt fat = -",V E(wt). Gradient descent with 
constant step size", can then be viewed as Euler's method for solving the differential 
equation. One serious drawback of Euler's method is that it is unstable: each finite 
step leaves the trajectory of a solution without trying to get back to it. Virtually 
any other differential-equation solver surpasses Euler's method, and there are even 
some featuring dynamic parameter adaptation [5]. 

However, in the context of function minimization, this notion of stability ("do not 
drift away too far from a trajectory") would appear to be too strong. Indeed, 
differential-equation solvers put much effort into a good estimation of points that 
are as close as possible to the trajectory under consideration. What is really needed 
for minimization is asymptotic stability: ensuring that the performance of the pa­
rameter set does not decrease at the end of learning. This weaker stability criterion 
allows for greedy steps in the initial phase of learning. 

There are several successful examples of dynamic learning-rate adaptation for back­
propagation: Newton and quasi-Newton methods [2] as an adaptive ",-tensor; indi­
vidual learning rates for the weights [3, 8]; conjugate gradient as a one-dimensional 
",-estimation [4]; or straightforward ",-adaptation [1, 7]. 



Stable Dynamic Parameter Adaptation 227 

A particularly good example of dynamic parameter adaptation was proposed by 
Salomon [6, 7]: let ( > 1; at every step t of the backpropagation algorithm test two 
values for 17, a somewhat smaller one, 17d(, and a somewhat larger one, 17t(; use as 
17HI the value with the better performance, i. e., the smaller error: 

The setting of the new parameter (proves to be uncritical (all values work, especially 
sensible ones being those between 1.2 and 2.1). This method outperforms many 
other gradient-based algorithms, but it is nonetheless unstable. 

b) 

Figure 1: Unstable Parameter Adaptation 

The problem arises from a rapidly changing length and direction of the gradient, 
which can result in a huge leap away from a minimum, although the latter may have 
been almost reached. Figure 1a shows the niveau lines of a simple quadratic error 
function E: 1R2 -+ IR along with the weight vectors wo, WI , . .. (bold dots) resulting 
from the above algorithm. This effect was probably the reason why Salomon sug­
gested using the normalized gradient instead of the gradient, thus getting rid of the 
changes in the length of the gradient. Although this works much better, Figure 1b 
shows the instability of this algorithm due to the change in the gradient's direction. 

There is enough evidence that these algorithms converge for a purely quadratic 
error function [6, 7]. Why bother with stability? One would like to prove that an 
algorithm asymptotically finds the minimum, rather than occasionally leaping far 
away from it and thus leaving the region where the quadratic Hessian term of a 
globally nonquadratic error function dominates. 

3 A CLASS OF STABLE ALGORITHMS 

In this section, a class of algorithms is derived from the above ones by adding 
stability. This class provides not only a proof of asymptotic convergence, but also 
a significant improvement in speed. 

Let E: IRn -+ IR be an error function of a neural net with random weight vector 
W O E IRn. Let ( > 1, 170 > 0, 0 < c ~ 1, and 0 < a ~ 1 ~ b. At step t of the algo­
rithm, choose a vector gt restricted only by the conditions gtV E(wt)/Igtllv Ew t I ~ c 
and that it either holds for all t that 1/1gtl E [a, b) or that it holds for all t that 
IV E(wt)I/lgtl E [a, b), i. e., the vectors g have a minimal positive projection onto 
the gradient and either have a uniformly bounded length or are uniformly bounded 
by the length of the gradient. Note that this is always possible by choosing gt as the 
gradient or the normalized gradient. 

Let e: 17 t-t E (wt - 17gt) denote a one-dimensional error function given by E, wt and 
gt. Repeat (until the gradient vanishes or an upper limit of t or a lower limit Emin 
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of E is reached) the iteration WH1 = wt - 'T/tHgt with 

'T/* .- 'T/t(/2 
if e(O) < e('T/t() .-

1 + e('T/t() - e(O) 

'T/Hl = 'T/t(gt\1 E(wt) (1) 
'T/d( if e('T/d() ::; e('T/t() ::; e(O) 

'T/t( otherwise. 

The first case for 'T/Hl is a stabilizing term 'T/*, which definitely decreases the error 
when the error surface is quadratic, i. e., near a minimum. 'T/* is put into effect 
when the errOr e(T}t() , which would occur in the next step if'T/t+l = 'T/t( was chosen, 
exceeds the error e(O) produced by the present weight vector wt . By construction, 
'T/* results in a value less than 'T/t(/2 if e('T/t() > e(O); hence, given ( < 2, the learning 
rate is decreased as expected, no matter what E looks like. Typically, (if the values 
for ( are not extremely high) the other two cases apply, where 'T/t( and 'T/d ( compete 
for a lower error. 

Note that, instead of gradient descent, this class of algorithms proposes a "gt de­
scent," and the vectors gt may differ from the gradient. A particular algorithm is 
given by a specification of how to choose gt. 

4 PROOF OF ASYMPTOTIC CONVERGENCE 

Asymptotic convergence. Let E: w f-t 2:~=1 AiW; /2 with Ai > O. For all ( > 1, 
o < c ::; 1, 0 < a ::; 1 ::; b, 'T/o > 0, and WO E IRn , every algorithm from Section :1 
produces a sequence t f-t wt that converges to the minimum 0 of E with an at least 
exponential decay of t f-t E(wt). 

Proof. This statement follows if a constant q < 1 exists with E(WH1 ) ::; qE(wt) for 
all t. Then, limt~oo wt = 0, since w f-t ..jE(w) is a norm in IRn. 

Fix a wt , 'T/t, and a gt according to the premise. Since E is a positive definite 
quadratic form, e: 'T/ f-t E( wt - 'T/gt ) is a one-dimensional quadratic function with 
a minimum at, say, 'T/*. Note that e(O) = E(wt) and e('T/tH) = E(wt+l). e is 
completely determined by e(O), e'(O) = -gt\1 E(wt), 'T/te and e('T/t(). Omitting the 
algebra, it follows that 'T/* can be identified with the stabilizing term of (1). 

e(O) 

.A'-~--I qe( 0) 
-...-...J'----+I (1 - q11)e(0) + q11e('T/*) 

e"----r-++--+j qee(O) 

__ ~<-+--+I 11t+~:11· e(O) + (1 - 11t±~:11· )e('T/*) 

e( 'T/*) 1--____ ---""' ...... ----A~-_+_--+t e( 'T/tH) 

o 

Figure 2: Steps in Estimating a Bound q for the Improvement of E. 
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If e(17t() > e(O), by (1) 17t+l will be set to 17·; hence, Wt+l has the smallest possible 
error e(17·) along the line given by l. Otherwise, the three values 0, 17t!(, and 17t( 
cannot have the same error e, as e is quadratic; e(17t() or e(17t!() must be less than 
e(O), and the argument with the better performance is used as 17tH' The sequence 
t I-t E(wt) is strictly decreasing; hence, a q ~ 1 exists. The rest of the proof shows 
the existence of a q < 1. 

Assume there are two constants 0 < qe, qT/ < 1 with 

E [qT/,2 - qT/] 
~ qee(O). 

Let 17tH ~ 17·; using first the convexity of e, then (2), and (3), one obtains 

< 

< 
< 

e(17tH -17· 2 • + (1- 17t+l -17·) .) 
17. 17 17. 17 

17t+l -17· e(O) + (1- 17tH -17· )e(17.) 
17· 17· 

(1 - qT/)e(O) + qf/e(17·) 
(1- qT/(1 - qe))e(O). 

(2) 
(3) 

Figure 2 shows how the estimations work. The symmetric case 0 < 17tH ~ 17· has 
the same result E(wt+l) ~ qE(wt) with q := 1 - qT/(1 - qe) < 1. 

Let ,X < := minPi} and ,X> := max{'xi}. A straightforward estimation for qe yields 

,X< 
qe := 1 - c2 ,X> < 1. 

Note that 17· depends on wt and gt. A careful analysis of the recursive dependence 
of 17t+l /17· (wt , gt) on 17t /17·( wt - 1 ,l-l) uncovers an estimation 

._ min _2_ ~ ca ~ 17o (,X > 0 ( <) 3/2 < 
qT/ .- {(2 + l' (2 + 1 b'x> , bmax{1, J2'x> E(WO)}} . 

5 NON-GRADIENT DIRECTIONS CAN IMPROVE 
CONVERGENCE 

• 

It is well known that the sign-changed gradient of a function is not necessarily the 
best direction to look for a minimum. The momentum term of a modified back­
propagation version uses old gradient directions; Newton or quasi-Newton methods 
explicitly or implicitly exploit second-order derivatives for a change of direction; 
another choice of direction is given by conjugate gradient methods [5]. 

The algorithms from Section 3 allow almost any direction, as long as it is not nearly 
perpendicular to the gradient. Since they estimate a good step size, these algorithms 
can be regarded as a sort of "trial-and-error" line search without bothering to find 
an exact minimum in the given direction, but utilizing any progress made so far . 

One could incorporate the Polak-Ribiere rule, cttH = \1 E( Wt+l) + a(3ctt, for conju­
gate directions with dO = \1 E (WO), a = 1, and 

(\1E(Wt+l) - \1E(wt))\1E(wt+l) 
(3 = (\1 E(Wt))2 
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to propose vectors gt := ett /Iettl for an explicit algorithm from Section 3. As in 
the conjugate gradient method, one should reset the direction ett after each n (the 
number of weights) updates to the gradient direction. Another reason for resetting 
the direction arises when gt does not have the minimal positive projection c onto 
the normalized gradient. 

a = 0 sets the descent direction gt to the normalized gradient "V E(wt)/I"V E(wt)lj 
this algorithm proves to exhibit a behavior very similar to Salomon's algorithm with 
normalized gradients. The difference lies in the occurrence of some stabilization 
steps from time to time, which, in general, improve the convergence. 

Since comparisons of Salomon's algorithm to many other methods have been pub­
lished [7], this paper confines itself to show that significant improvements are 
brought about by non-gradient directions, e. g., by Polak-Ribiere directions (a = 1). 

Table 1: Average Learning Time for Some Problems 

PROBLEM Emin a = 0 a = 1 

(a) 3-2-4 regression 10° 195± 95% 58 ± 70% 
(b) 3-2-4 approximation 10-4 1070 ± 140% 189± 115% 
(c) Pure square (n = 76) 10-16 464± 17% 118± 9% 
(d) Power 1.8 (n = 76) 10-4 486± 29% 84± 23% 
(e) Power 3.8 (n = 76) 10-16 28 ± 10% 37± 14% 
(f) 8-3-8 encoder 10-4 1380± 60% 300± 60% 

Table 1 shows the average number of epochs of two algorithms for some problems. 
The average was taken over many initial random weight vectors and over values of 
( E [1.7,2.1]j the root mean square error of the averaging process is shown as a 
percentage. Note that, owing to the two test steps for ",t/( and "'t(, one epoch has 
an overhead of around 50% compared to a corresponding epoch of backpropagation. 
a f:. 0 helps: it could be chosen by dynamic parameter adaptation. 

Problems (a) and (b) represent the approximation of a function known only from 
some example data. A neural net with 3 input, 2 hidden, and 4 output nodes was 
used to generate the example dataj artificial noise was added for problem (a). The 
same net with random initial weights was then used to learn an approximation. 
These problems for feedforward nets are expected to have regular minima. 

Problem (c) uses a pure square error function E: w rt L:~1 ilwil P /2 with p = 2 
and n = 76. Note that conjugate gradient needs exactly n epochs to arrive at the 
minimum [5]. However, the few additional epochs that are needed by the a = 1 
algorithm to reach a fairly small error (here 118 as opposed to 76) must be compared 
to the overhead of conjugate gradient (one line search per epoch). 

Powers other than 2, as used in (d) or (e), work well as long as, say, p > 1.5. A power 
p < 1 will (if n ~ 2) produce a "trap" for the weight vector at a location near a 
coordinate axis, where, owing to an infinite gradient component, no gradient-based 
algorithm can escape1 . Problems are expected even for p near 1: the algorithms of 
Section 3 exploit the fact that the gradient vanishes at a minimum, which in turn 
is numerically questionable for a power like 1.1. Typical minima, however, employ 
powers 2,4, ... Even better convergence is expected and found for large powers. 

IDynamic parameter adaptation as in (1) can cope with the square-root singularity 
(p = 1/2) in one dimension, because the adaptation rule allows a fast enough decay of 
the learning rate; the ability to minimize this one-dimensional square-root singularity is 
somewhat overemphasized in [7]. 
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The 8-3-8 encoder (f) was studied, because the error function has global minima 
at the boundary of the domain (one or more weights with infinite length). These 
minima, though not covered in Section 4, are quickly found. Indeed, the ability 
to increase the learning rate geometrically helps these algorithms to approach the 
boundary in a few steps. 

6 CONCLUSIONS 

It has been shown that implementing asymptotic stability does help in the case of the 
backpropagation learning rate: the theoretical analysis has been simplified, and the 
speed of convergence has been improved. Moreover, the presented framework allows 
descent directions to be chosen flexibly, e. g., by the Polak-Ribiere rule. Future work 
includes studies of how to apply the stability criterion to other parametric learning 
problems. 
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