
Stable Dynamic Parameter Adaptation

Stefan M. Riiger
Fachbereich Informatik, Technische Universitat Berlin

Sekr. FR 5-9, Franklinstr. 28/29
10587 Berlin, Germany
async~cs. tu-berlin.de

Abstract

A stability criterion for dynamic parameter adaptation is given. In
the case of the learning rate of backpropagation, a class of stable
algorithms is presented and studied, including a convergence proof.

1 INTRODUCTION

All but a few learning algorithms employ one or more parameters that control the
quality of learning. Backpropagation has its learning rate and momentum param­
eter; Boltzmann learning uses a simulated annealing schedule; Kohonen learning
a learning rate and a decay parameter; genetic algorithms probabilities, etc. The
investigator always has to set the parameters to specific values when trying to solve
a certain problem. Traditionally, the metaproblem of adjusting the parameters is
solved by relying on a set of well-tested values of other problems or an intensive
search for good parameter regions by restarting the experiment with different val­
ues. In this situation, a great deal of expertise and/or time for experiment design
is required (as well as a huge amount of computing time).

1.1 DYNAMIC PARAMETER ADAPTATION

In order to achieve dynamic parameter adaptation, it is necessary to modify the
learning algorithm under consideration: evaluate the performance of the parameters
in use from time to time, compare them with the performance of nearby values, and
(if necessary) change the parameter setting on the fly. This requires that there
exist a measure of the quality of a parameter setting, called performance, with the
following properties: the performance depends continuously on the parameter set
under consideration, and it is possible to evaluate the performance locally, i. e., at
a certain point within an inner loop of the algorithm (as opposed to once only at
the end of the algorithm). This is what dynamic parameter adaptation is all about.

226 S.M.RUOER

Dynamic parameter adaptation has several virtues. It is automatic; and there is no
need for an extra schedule to find what parameters suit the problem best. When
the notion of what the good values of a parameter set are changes during learning,
dynamic parameter adaptation keeps track of these changes.

1.2 EXAMPLE: LEARNING RATE OF BACKPROPAGATION

Backpropagation is an algorithm that implements gradient descent in an error
function E: IRn ~ llt Given WO E IRn and a fixed '" > 0, the iteration rule is
WH1 = wt - ",V E(wt). The learning rate", is a local parameter in the sense that
at different stages of the algorithm different learning rates would be optimal. This
property and the following theorem make", especially interesting.

Trade-off theorem for backpropagation. Let E: JR1l ~ IR be the error function of
a neural net with a regular minimum at w· E IRn , i. e., E is expansible into a
Taylor series about w· with vanishing gradient V E(w·) and positive definite Hessian
matrix H(w·) . Let A denote the largest eigenvalue of H(w·). Then, in general,
backpropagation with a fixed learning rate", > 2/ A cannot converge to w· .

Proof. Let U be an orthogonal matrix that diagonalizes H(w·), i. e., D :=
UT H (w·) U is diagonal. U sing the coordinate transformation x = UT (w - w·)
and Taylor expansion, E(w) - E(w·) can be approximated by F(x) := xT Dx/2.
Since gradient descent does not refer to the coordinate system, the asymptotic be­
havior of backpropagation for E near w· is the same as for F near O. In the latter
case, backpropagation calculates the weight components x~ = x~(I- Dii",)t at time
step t. The diagonal elements Dii are the eigenvalues of H(w·); convergence for all
geometric sequences t 1-7 x~ thus requires", < 2/ A. I

The trade-off theorem states that, given "', a large class of minima cannot be found,
namely, those whose largest eigenvalue of the corresponding Hessian matrix is larger
than 2/",. Fewer minima might be overlooked by using a smaller "', but then the
algorithm becomes intolerably slow. Dynamic learning-rate adaptation is urgently
needed for backpropagation!

2 STABLE DYNAMIC PARAMETER ADAPTATION

Transforming the equation for gradient descent, wt+l = wt - ",VE(wt), into a
differential equation, one arrives at awt fat = -",V E(wt). Gradient descent with
constant step size", can then be viewed as Euler's method for solving the differential
equation. One serious drawback of Euler's method is that it is unstable: each finite
step leaves the trajectory of a solution without trying to get back to it. Virtually
any other differential-equation solver surpasses Euler's method, and there are even
some featuring dynamic parameter adaptation [5].

However, in the context of function minimization, this notion of stability ("do not
drift away too far from a trajectory") would appear to be too strong. Indeed,
differential-equation solvers put much effort into a good estimation of points that
are as close as possible to the trajectory under consideration. What is really needed
for minimization is asymptotic stability: ensuring that the performance of the pa­
rameter set does not decrease at the end of learning. This weaker stability criterion
allows for greedy steps in the initial phase of learning.

There are several successful examples of dynamic learning-rate adaptation for back­
propagation: Newton and quasi-Newton methods [2] as an adaptive ",-tensor; indi­
vidual learning rates for the weights [3, 8]; conjugate gradient as a one-dimensional
",-estimation [4]; or straightforward ",-adaptation [1, 7].

Stable Dynamic Parameter Adaptation 227

A particularly good example of dynamic parameter adaptation was proposed by
Salomon [6, 7]: let (> 1; at every step t of the backpropagation algorithm test two
values for 17, a somewhat smaller one, 17d(, and a somewhat larger one, 17t(; use as
17HI the value with the better performance, i. e., the smaller error:

The setting of the new parameter (proves to be uncritical (all values work, especially
sensible ones being those between 1.2 and 2.1). This method outperforms many
other gradient-based algorithms, but it is nonetheless unstable.

b)

Figure 1: Unstable Parameter Adaptation

The problem arises from a rapidly changing length and direction of the gradient,
which can result in a huge leap away from a minimum, although the latter may have
been almost reached. Figure 1a shows the niveau lines of a simple quadratic error
function E: 1R2 -+ IR along with the weight vectors wo, WI , . .. (bold dots) resulting
from the above algorithm. This effect was probably the reason why Salomon sug­
gested using the normalized gradient instead of the gradient, thus getting rid of the
changes in the length of the gradient. Although this works much better, Figure 1b
shows the instability of this algorithm due to the change in the gradient's direction.

There is enough evidence that these algorithms converge for a purely quadratic
error function [6, 7]. Why bother with stability? One would like to prove that an
algorithm asymptotically finds the minimum, rather than occasionally leaping far
away from it and thus leaving the region where the quadratic Hessian term of a
globally nonquadratic error function dominates.

3 A CLASS OF STABLE ALGORITHMS

In this section, a class of algorithms is derived from the above ones by adding
stability. This class provides not only a proof of asymptotic convergence, but also
a significant improvement in speed.

Let E: IRn -+ IR be an error function of a neural net with random weight vector
W O E IRn. Let (> 1, 170 > 0, 0 < c ~ 1, and 0 < a ~ 1 ~ b. At step t of the algo­
rithm, choose a vector gt restricted only by the conditions gtV E(wt)/Igtllv Ew t I ~ c
and that it either holds for all t that 1/1gtl E [a, b) or that it holds for all t that
IV E(wt)I/lgtl E [a, b), i. e., the vectors g have a minimal positive projection onto
the gradient and either have a uniformly bounded length or are uniformly bounded
by the length of the gradient. Note that this is always possible by choosing gt as the
gradient or the normalized gradient.

Let e: 17 t-t E (wt - 17gt) denote a one-dimensional error function given by E, wt and
gt. Repeat (until the gradient vanishes or an upper limit of t or a lower limit Emin

228 S.M.ROOER

of E is reached) the iteration WH1 = wt - 'T/tHgt with

'T/* .- 'T/t(/2
if e(O) < e('T/t() .-

1 + e('T/t() - e(O)

'T/Hl = 'T/t(gt\1 E(wt) (1)
'T/d(if e('T/d() ::; e('T/t() ::; e(O)

'T/t(otherwise.

The first case for 'T/Hl is a stabilizing term 'T/*, which definitely decreases the error
when the error surface is quadratic, i. e., near a minimum. 'T/* is put into effect
when the errOr e(T}t() , which would occur in the next step if'T/t+l = 'T/t(was chosen,
exceeds the error e(O) produced by the present weight vector wt . By construction,
'T/* results in a value less than 'T/t(/2 if e('T/t() > e(O); hence, given (< 2, the learning
rate is decreased as expected, no matter what E looks like. Typically, (if the values
for (are not extremely high) the other two cases apply, where 'T/t(and 'T/d (compete
for a lower error.

Note that, instead of gradient descent, this class of algorithms proposes a "gt de­
scent," and the vectors gt may differ from the gradient. A particular algorithm is
given by a specification of how to choose gt.

4 PROOF OF ASYMPTOTIC CONVERGENCE

Asymptotic convergence. Let E: w f-t 2:~=1 AiW; /2 with Ai > O. For all (> 1,
o < c ::; 1, 0 < a ::; 1 ::; b, 'T/o > 0, and WO E IRn , every algorithm from Section :1
produces a sequence t f-t wt that converges to the minimum 0 of E with an at least
exponential decay of t f-t E(wt).

Proof. This statement follows if a constant q < 1 exists with E(WH1) ::; qE(wt) for
all t. Then, limt~oo wt = 0, since w f-t ..jE(w) is a norm in IRn.

Fix a wt , 'T/t, and a gt according to the premise. Since E is a positive definite
quadratic form, e: 'T/ f-t E(wt - 'T/gt) is a one-dimensional quadratic function with
a minimum at, say, 'T/*. Note that e(O) = E(wt) and e('T/tH) = E(wt+l). e is
completely determined by e(O), e'(O) = -gt\1 E(wt), 'T/te and e('T/t(). Omitting the
algebra, it follows that 'T/* can be identified with the stabilizing term of (1).

e(O)

.A'-~--I qe(0)
-...-...J'----+I (1 - q11)e(0) + q11e('T/*)

e"----r-++--+j qee(O)

__ ~<-+--+I 11t+~:11· e(O) + (1 - 11t±~:11·)e('T/*)

e('T/*) 1--____ ---""' ----A~-_+_--+t e('T/tH)

o

Figure 2: Steps in Estimating a Bound q for the Improvement of E.

Stable Dynamic Parameter Adaptation 229

If e(17t() > e(O), by (1) 17t+l will be set to 17·; hence, Wt+l has the smallest possible
error e(17·) along the line given by l. Otherwise, the three values 0, 17t!(, and 17t(
cannot have the same error e, as e is quadratic; e(17t() or e(17t!() must be less than
e(O), and the argument with the better performance is used as 17tH' The sequence
t I-t E(wt) is strictly decreasing; hence, a q ~ 1 exists. The rest of the proof shows
the existence of a q < 1.

Assume there are two constants 0 < qe, qT/ < 1 with

E [qT/,2 - qT/]
~ qee(O).

Let 17tH ~ 17·; using first the convexity of e, then (2), and (3), one obtains

<

<
<

e(17tH -17· 2 • + (1- 17t+l -17·) .)
17. 17 17. 17

17t+l -17· e(O) + (1- 17tH -17·)e(17.)
17· 17·

(1 - qT/)e(O) + qf/e(17·)
(1- qT/(1 - qe))e(O).

(2)
(3)

Figure 2 shows how the estimations work. The symmetric case 0 < 17tH ~ 17· has
the same result E(wt+l) ~ qE(wt) with q := 1 - qT/(1 - qe) < 1.

Let ,X < := minPi} and ,X> := max{'xi}. A straightforward estimation for qe yields

,X<
qe := 1 - c2 ,X> < 1.

Note that 17· depends on wt and gt. A careful analysis of the recursive dependence
of 17t+l /17· (wt , gt) on 17t /17·(wt - 1 ,l-l) uncovers an estimation

._ min _2_ ~ ca ~ 17o (,X > 0 (<) 3/2 <
qT/ .- {(2 + l' (2 + 1 b'x> , bmax{1, J2'x> E(WO)}} .

5 NON-GRADIENT DIRECTIONS CAN IMPROVE
CONVERGENCE

•

It is well known that the sign-changed gradient of a function is not necessarily the
best direction to look for a minimum. The momentum term of a modified back­
propagation version uses old gradient directions; Newton or quasi-Newton methods
explicitly or implicitly exploit second-order derivatives for a change of direction;
another choice of direction is given by conjugate gradient methods [5].

The algorithms from Section 3 allow almost any direction, as long as it is not nearly
perpendicular to the gradient. Since they estimate a good step size, these algorithms
can be regarded as a sort of "trial-and-error" line search without bothering to find
an exact minimum in the given direction, but utilizing any progress made so far .

One could incorporate the Polak-Ribiere rule, cttH = \1 E(Wt+l) + a(3ctt, for conju­
gate directions with dO = \1 E (WO), a = 1, and

(\1E(Wt+l) - \1E(wt))\1E(wt+l)
(3 = (\1 E(Wt))2

230 S.M. RUOER

to propose vectors gt := ett /Iettl for an explicit algorithm from Section 3. As in
the conjugate gradient method, one should reset the direction ett after each n (the
number of weights) updates to the gradient direction. Another reason for resetting
the direction arises when gt does not have the minimal positive projection c onto
the normalized gradient.

a = 0 sets the descent direction gt to the normalized gradient "V E(wt)/I"V E(wt)lj
this algorithm proves to exhibit a behavior very similar to Salomon's algorithm with
normalized gradients. The difference lies in the occurrence of some stabilization
steps from time to time, which, in general, improve the convergence.

Since comparisons of Salomon's algorithm to many other methods have been pub­
lished [7], this paper confines itself to show that significant improvements are
brought about by non-gradient directions, e. g., by Polak-Ribiere directions (a = 1).

Table 1: Average Learning Time for Some Problems

PROBLEM Emin a = 0 a = 1

(a) 3-2-4 regression 10° 195± 95% 58 ± 70%
(b) 3-2-4 approximation 10-4 1070 ± 140% 189± 115%
(c) Pure square (n = 76) 10-16 464± 17% 118± 9%
(d) Power 1.8 (n = 76) 10-4 486± 29% 84± 23%
(e) Power 3.8 (n = 76) 10-16 28 ± 10% 37± 14%
(f) 8-3-8 encoder 10-4 1380± 60% 300± 60%

Table 1 shows the average number of epochs of two algorithms for some problems.
The average was taken over many initial random weight vectors and over values of
(E [1.7,2.1]j the root mean square error of the averaging process is shown as a
percentage. Note that, owing to the two test steps for ",t/(and "'t(, one epoch has
an overhead of around 50% compared to a corresponding epoch of backpropagation.
a f:. 0 helps: it could be chosen by dynamic parameter adaptation.

Problems (a) and (b) represent the approximation of a function known only from
some example data. A neural net with 3 input, 2 hidden, and 4 output nodes was
used to generate the example dataj artificial noise was added for problem (a). The
same net with random initial weights was then used to learn an approximation.
These problems for feedforward nets are expected to have regular minima.

Problem (c) uses a pure square error function E: w rt L:~1 ilwil P /2 with p = 2
and n = 76. Note that conjugate gradient needs exactly n epochs to arrive at the
minimum [5]. However, the few additional epochs that are needed by the a = 1
algorithm to reach a fairly small error (here 118 as opposed to 76) must be compared
to the overhead of conjugate gradient (one line search per epoch).

Powers other than 2, as used in (d) or (e), work well as long as, say, p > 1.5. A power
p < 1 will (if n ~ 2) produce a "trap" for the weight vector at a location near a
coordinate axis, where, owing to an infinite gradient component, no gradient-based
algorithm can escape1 . Problems are expected even for p near 1: the algorithms of
Section 3 exploit the fact that the gradient vanishes at a minimum, which in turn
is numerically questionable for a power like 1.1. Typical minima, however, employ
powers 2,4, ... Even better convergence is expected and found for large powers.

IDynamic parameter adaptation as in (1) can cope with the square-root singularity
(p = 1/2) in one dimension, because the adaptation rule allows a fast enough decay of
the learning rate; the ability to minimize this one-dimensional square-root singularity is
somewhat overemphasized in [7].

Stable Dynamic Parameter Adaptation 231

The 8-3-8 encoder (f) was studied, because the error function has global minima
at the boundary of the domain (one or more weights with infinite length). These
minima, though not covered in Section 4, are quickly found. Indeed, the ability
to increase the learning rate geometrically helps these algorithms to approach the
boundary in a few steps.

6 CONCLUSIONS

It has been shown that implementing asymptotic stability does help in the case of the
backpropagation learning rate: the theoretical analysis has been simplified, and the
speed of convergence has been improved. Moreover, the presented framework allows
descent directions to be chosen flexibly, e. g., by the Polak-Ribiere rule. Future work
includes studies of how to apply the stability criterion to other parametric learning
problems.

References

[1] R. Battiti. Accelerated backpropagation learning: Two optimization methods.
Complex Systems, 3:331-342, 1989.

[2] S. Becker and Y. Ie Cun. Improving the convergence of back-propagation learn­
ing with second order methods. In D. Touretzky, G. Hinton, and T. Sejnowski,
editors, Proceedings of the 1988 Connectionist Models Summer School, pages
29-37. Morgan Kaufmann, San Mateo, 1989.

[3] R. Jacobs. Increased rates of convergence through learning rate adaptation.
Neural Networks, 1:295-307, 1988.

[4] A. Kramer and A. Sangiovanni-Vincentelli. Efficient parallel learning algorithms
for neural networks. In D. Touretzky, editor, Advances in Neural Information
Processing Systems 1, pages 40-48. Morgan Kaufmann, San Mateo, 1989.

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes in C. Cambridge University Press, 1988.

[6] R. Salomon. Verbesserung konnektionistischer Lernverfahren, die nach der Gra­
dientenmethode arbeiten. PhD thesis, TU Berlin, October 1991.

[7] R. Salomon and J. L. van Hemmen. Accelerating backpropagation through
dynamic self-adaptation. Neural Networks, 1996 (in press).

[8] F. M. Silva and L. B. Almeida. Speeding up backpropagation. In Proceedings of
NSMS - International Symposium on Neural Networks for Sensory and Motor
Systems, Amsterdam, 1990. Elsevier.

