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Abstract 
We introduce a constructive, incremental learning system for regression 
problems that models data by means of locally linear experts. In contrast 
to other approaches, the experts are trained independently and do not 
compete for data during learning. Only when a prediction for a query is 
required do the experts cooperate by blending their individual predic­
tions. Each expert is trained by minimizing a penalized local cross vali­
dation error using second order methods. In this way, an expert is able to 
find a local distance metric by adjusting the size and shape of the recep­
tive field in which its predictions are valid, and also to detect relevant in­
put features by adjusting its bias on the importance of individual input 
dimensions. We derive asymptotic results for our method. In a variety of 
simulations the properties of the algorithm are demonstrated with respect 
to interference, learning speed, prediction accuracy, feature detection, 
and task oriented incremental learning. 

1. INTRODUCTION 
Distributing a learning task among a set of experts has become a popular method in compu­
tationallearning. One approach is to employ several experts, each with a global domain of 
expertise (e.g., Wolpert, 1990). When an output for a given input is to be predicted, every 
expert gives a prediction together with a confidence measure. The individual predictions 
are combined into a single result, for instance, based on a confidence weighted average. 
Another approach-the approach pursued in this paper-of employing experts is to create 
experts with local domains of expertise. In contrast to the global experts, the local experts 
have little overlap or no overlap at all. To assign a local domain of expertise to each expert, 
it is necessary to learn an expert selection system in addition to the experts themselves. 
This classifier determines which expert models are used in which part of the input space. 
For incremental learning, competitive learning methods are usually applied. Here the ex­
perts compete for data such that they change their domains of expertise until a stable con­
figuration is achieved (e.g., Jacobs, Jordan, Nowlan, & Hinton, 1991). The advantage of 
local experts is that they can have simple parameterizations, such as locally constant or lo­
cally linear models. This offers benefits in terms of analyzability, learning speed, and ro­
bustness (e.g., Jordan & Jacobs, 1994). For simple experts, however, a large number of ex­
perts is necessary to model a function. As a result, the expert selection system has to be 
more complicated and, thus, has a higher risk of getting stuck in local minima and/or of 
learning rather slowly. In incremental learning, another potential danger arises when the 
input distribution of the data changes. The expert selection system usually makes either 
implicit or explicit prior assumptions about the input data distribution. For example, in the 
classical mixture model (McLachlan & Basford, 1988) which was employed in several lo­
cal expert approaches, the prior probabilities of each mixture model can be interpreted as 
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the fraction of data points each expert expects to experience. Therefore, a change in input 
distribution will cause all experts to change their domains of expertise in order to fulfill 
these prior assumptions. This can lead to catastrophic interference. 

In order to avoid these problems and to cope with the interference problems during incre­
mental learning due to changes in input distribution, we suggest eliminating the competi­
tion among experts and instead isolating them during learning. Whenever some new data is 
experienced which is not accounted for by one of the current experts, a new expert is cre­
ated. Since the experts do not compete for data with their peers, there is no reason for them 
to change the location of their domains of expertise. However, when it comes to making a 
prediction at a query point, all the experts cooperate by giving a prediction of the output 
together with a confidence measure. A blending of all the predictions of all experts results 
in the final prediction. It should be noted that these local experts combine properties of 
both the global and local experts mentioned previously. They act like global experts by 
learning independently of each other and by blending their predictions, but they act like lo­
cal experts by confining themselves to a local domain of expertise, i.e., their confidence 
measures are large only in a local region. 

The topic of data fitting with structurally simple local models (or experts) has received a 
great deal of attention in nonparametric statistics (e.g., Nadaraya, 1964; Cleveland, 1979; 
Scott, 1992, Hastie & Tibshirani, 1990). In this paper, we will demonstrate how a non­
parametric approach can be applied to obtain the isolated expert network (Section 2.1), 
how its asymptotic properties can be analyzed (Section 2.2), and what characteristics such 
a learning system possesses in terms of the avoidance of interference, feature detection, 
dimensionality reduction, and incremental learning of motor control tasks (Section 3). 

2. RECEPTIVE FIELD WEIGHTED REGRESSION 

This paper focuses on regression problems, i.e., the learning of a map from 9tn ~ 9tm • 

Each expert in our learning method, Receptive Field Weighted Regression (RFWR), con­
sists of two elements, a locally linear model to represent the local functional relationship, 
and a receptive field which determines the region in input space in which the expert's 
knowledge is valid. As a result, a given data set will be modeled by piecewise linear ele­
ments, blended together. For 1000 noisy data points drawn from the unit interval of the 
function z == max[exp(-10x2),exp(-50l),1.25exp(-5(x2 + l)], Figure 1 illustrates an 
example of function fitting with RFWR. This function consists of a narrow and a wide 
ridge which are perpendicular to each other, and a Gaussian bump at the origin. Figure 1 b 
shows the receptive fields which the system created during the learning process. Each ex­
perts' location is at the center of its receptive field, marked by a $ in Figure 1 b. The recep-
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Figure 1: (a) result of function approximation with RFWR. (b) contour lines of 0.1 iso-activation of 
each expert in input space (the experts' centers are marked by small circles). 
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tive fields are modeled by Gaussian functions, and their 0.1 iso-activation lines are shown 
in Figure 1 b as well. As can be seen, each expert focuses on a certain region of the input 
space, and the shape and orientation of this region reflects the function's complexity, or 
more precisely, the function's curvature, in this region. It should be noticed that there is a 
certain amount of overlap among the experts, and that the placement of experts occurred on 
a greedy basis during learning and is not globally optimal. The approximation result 
(Figure 1 a) is a faithful reconstruction of the real function (MSE = 0.0025 on a test set, 30 
epochs training, about 1 minute of computation on a SPARC1O). As a baseline comparison, 
a similar result with a sigmoidal 3-layer neural network required about 100 hidden units 
and 10000 epochs of annealed standard backpropagation (about 4 hours on a SPARC1O). 

2.1 THE ALGORITHM 
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Figure 2: The RFWR network 

RFWR can be sketched in network form as 
shown in Figure 2. All inputs connect to all ex­
pert networks, and new experts can be added as 
needed. Each expert is an independent entity. It 
consists of a two layer linear subnet and a recep­
tive field subnet. The receptive field subnet has a 
single unit with a bell-shaped activation profile, 
centered at the fixed location c in input space. 
The maximal output of this unit is "I" at the cen­
ter, and it decays to zero as a function of the dis­
tance from the center. For analytical convenience, 
we choose this unit to be Gaussian: 

(1) 

x is the input vector, and D the distance metric, a positive definite matrix that is generated 
from the upper triangular matrix M. The output of the linear subnet is: 

A Tb b -Tf3 y=x + o=x (2) 

The connection strengths b of the linear subnet and its bias bO will be denoted by the d-di­

mensional vector f3 from now on, and the tilde sign will indicate that a vector has been 
augmented by a constant "I", e.g., i = (x T , Il . In generating the total output, the receptive 
field units act as a gating component on the output, such that the total prediction is: 

(3) 

The parameters f3 and M are the primary quantities which have to be adjusted in the learn­
ing process: f3 forms the locally linear model, while M determines the shape and orienta­
tion of the receptive fields . Learning is achieved by incrementally minimizing the cost 
function: 

(4) 

The first term of this function is the weighted mean squared cross validation error over all 
experienced data points, a local cross validation measure (Schaal & Atkeson, 1994). The 
second term is a regularization or penalty term. Local cross validation by itself is consis­
tent, i.e., with an increasing amount of data, the size of the receptive field of an expert 
would shrink to zero. This would require the creation of an ever increasing number of ex­
perts during the course of learning. The penalty term introduces some non-vanishing bias 
in each expert such that its receptive field size does not shrink to zero. By penalizing the 
squared coefficients of D, we are essentially penalizing the second derivatives of the func­
tion at the site of the expert. This is similar to the approaches taken in spline fitting 
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(deBoor, 1978) and acts as a low-pass filter: the higher the second derivatives, the more 
smoothing (and thus bias) will be introduced. This will be analyzed further in Section 2.2. 

The update equations for the linear subnet are the standard weighted recursive least squares 
equation with forgetting factor A (Ljung & SOderstrom, 1986): 

1 ( pn- -Tpn ) f3 n+1 =f3n+wpn+lxe wherepn+1 =_ pn_ xx ande =(y-xT f3n) 
cv' A Ajw + xTpnx cv 

(5) 

This is a Newton method, and it requires maintaining the matrix P, which is size 
0.5d x (d + 1) . The update of the receptive field subnet is a gradient descent in J: 

Mn+l=Mn- a dJ!aM (6) 

Due to space limitations, the derivation of the derivative in (6) will not be explained here. 
The major ingredient is to take this derivative as in a batch update, and then to reformulate 
the result as an iterative scheme. The derivatives in batch mode can be calculated exactly 
due to the Sherman-Morrison-Woodbury theorem (Belsley, Kuh, & Welsch, 1980; At­
keson, 1992). The derivative for the incremental update is a very good approximation to 
the batch update and realizes incremental local cross validation. 

A new expert is initialized with a default M de! and all other variables set to zero, except the 

matrix P. P is initialized as a diagonal matrix with elements 11 r/, where the ri are usually 
small quantities, e.g., 0.01. The ri are ridge regression parameters. From a probabilistic 
view, they are Bayesian priors that the f3 vector is the zero vector. From an algorithmic 
view, they are fake data points of the form [x = (0, ... , '12 ,o, ... l,y = 0] (Atkeson, Moore, & 
Schaal, submitted). Using the update rule (5), the influence of the ridge regression pa­
rameters would fade away due to the forgetting factor A. However, it is useful to make the 
ridge regression parameters adjustable. As in (6), rj can be updated by gradient descent: 

1'n+1 = 1'n - a aJ/ar 
I I I (7) 

There are d ridge regression parameters, one for each diagonal element of the P matrix. In 
order to add in the update of the ridge parameters as well as to compensate for the forget­
ting factor, an iterative procedure based on (5) can be devised which we omit here. The 
computational complexity of this update is much reduced in comparison to (5) since many 
computations involve multiplications by zero. 

Initialize the RFWR network. with no expert; 
For every new training sample (x,y): 

a) For k= I to #experts: 

b) 

c) 

d) 

e) 

end; 

- calculate the activation from (I) 
- update the expert's parameters according to (5), (6), and (7) 
end; 
Ir no expert was activated by more than W gen : 

- create a new expert with c=x 
end; 
Ir two experts are acti vated more than W pn .. ~ 

- erase the expert with the smaller receptive field 
end; 
calculate the mean, err ""an' and standard de viation errslIl of the 
incrementally accumulated error er,! of all experts; 
For k.= I to #experts: 

Ir (Itrr! - err_I> 9 er'Sld) reinitialize expert k with M = 2 • Mdef 
end; 

In sum, a RFWR expert consists of 
three sets of parameters, one for 
the locally linear model, one for 
the size and shape of the receptive 
fields, and one for the bias. The 
linear model parameters are up­
dated by a Newton method, while 
the other parameters are updated 
by gradient descent. In our imple­
mentations, we actually use second 
order gradient descent based on 
Sutton (1992), since, with minor 

extra effort, we can obtain estimates of the second derivatives of the cost function with re­
spect to all parameters. Finally, the logic of RFWR becomes as shown in the pseudo-code 
above. Point c) and e) of the algorithm introduce a pruning facility. Pruning takes place ei­
ther when two experts overlap too much, or when an expert has an exceptionally large 
mean squared error. The latter method corresponds to a simple form of outlier detection. 
Local optimization of a distance metric always has a minimum for a very large receptive 
field size. In our case, this would mean that an expert favors global instead of locally linear 
regression. Such an expert will accumulate a very large error which can easily be detected 
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in the given way. The mean squared error term, err, on which this outlier detection is 
based, is a bias-corrected mean squared error, as will be explained below. 

2.2 ASYMPTOTIC BIAS AND PENALTY SELECTION 

The penalty term in the cost function (4) introduces bias. In order to assess the asymptotic 
value of this bias, the real function f(x) , which is to be learned, is assumed to be repre­
sented as a Taylor series expansion at the center of an expert's receptive field. Without loss 
of generality, the center is assumed to be at the origin in input space. We furthermore as­
sume that the size and shape of the receptive field are such that terms higher than 0(2) are 
negligible. Thus, the cost (4) can be written as: 

J ~ (1w(f. +fTX+~XTFX-bo -bTx Y dx )/(1 wdx )+r~Dnm (8) 

where fo' f, and F denote the constant, linear, and quadratic terms of the Taylor series 
expansion, respectively. Inserting Equation (1), the integrals can be solved analytically af­
ter the input space is rotated by an orthonormal matrix transforming F to the diagonal ma­
trix F'. Subsequently, bo' b, and D can be determined such that J is minimized: 

0.25 ( ) ~ b~ = fa + bias = fa + ~075 ~ sgn(F:')~IF;,:I, b' = f, D:: = (2r)2 
(9) 

This states that the linear model will asymptotically acquire the correct locally linear 
model, while the constant term will have bias proportional to the square root of the sum of 
the eigenvalues of F, i.e., the F:n • The distance metric D, whose diagonalized counterpart 
is D', will be a scaled image of the Hessian F with an additional square root distortion. 
Thus, the penalty term accomplishes the intended task: it introduces more smoothing the 
higher the curvature at an expert's location is, and it prevents the receptive field of an ex­
pert shrinking to zero size (which would obviously happen for r ~ 0). Additionally, 
Equation (9) shows how to determine rfor a given learning problem from an estimate of 
the eigenvalues and a permissible bias. Finally, it is possible to derive estimates of the bias 
and the mean squared error of each expert from the current distance metric D: 

biasesl = ~0.5r IJeigenvalues(D)l.; en,,~, = r L D;m (10) 
n.m 

The latter term was incorporated in the mean squared error, err, in Section 2.1. Empirical 
evaluations (not shown here) verified the validity of these asymptotic results. 

3. SIMULA TION RESULTS 
This section will demonstrate some of the properties of RFWR. In all simulations, the 
threshold parameters of the algorithm were set to e = 3.5, w prune = 0.9, and w min = 0.1. 

These quantities determine the overlap of the experts as well as the outlier removal thresh­
old; the results below are not affected by moderate changes in these parameters. 

3.1 AVOIDING INTERFERENCE 

In order to test RFWR's sensitivity with respect to changes in input data distribution, the 
data of the example of Figure 1 was partitioned into three separate training sets 
1; = {(x, y, z) 1-1.0 < x < -O.2} , 1; = {(x, y, z) 1-0.4 < x < OA}, 1; = {(x, y, z) I 0.2 < x < 1.0} . 
These data sets correspond to three overlapping stripes of data, each having about 400 uni­
formly distributed samples. From scratch, a RFWR network was trained first on I; for 20 
epochs, then on T2 for 20 epochs, and finally on 1; for 20 epochs. The penalty was chosen 
as in the example of Figure 1 to be r = I.e - 7 , which corresponds to an asymptotic bias of 
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0.1 at the sharp ridge of the function. The default distance metric D was 50*1, where I is 
the identity matrix. Figure 3 shows the results of this experiment. Very little interference 
can be found. The MSE on the test set increased from 0.0025 (of the original experiment of 
Figure 1) to 0.003, which is still an excellent reconstruction of the real function. 
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Figure 3: Reconstructed function after training on (a) 7;, (b) then ~,(c) and finally 1;. 

3.2 LOCAL FEATURE DETECTION 

The examples of RFWR given so far did not require ridge regression parameters. Their im­
portance, however, becomes obvious when dealing with locally rank deficient data or with 
irrelevant input dimensions. A learning system should be able to recognize irrelevant input 
dimensions. It is important to note that this cannot be accomplished by a distance metric. 
The distance metric is only able to decide to what spatial extent averaging over data in a 
certain dimension should be performed. However, the distance metric has no means to ex­
clude an input dimension. In contrast, bias learning with ridge regression parameters is able 
to exclude input dimensions. To demonstrate this, we added 8 purely noisy inputs 
(N(0,0.3)) to the data drawn from the function of Figure 1. After 30 epochs of training on a 
10000 data point training set, we analyzed histograms of the order of magnitude of the 
ridge regression parameters in all 100bias input dimensions over all the 79 experts that had 
been generated by the learning algorithm. All experts recognized that the input dimensions 
3 to 8 did not contain relevant information, and correctly increased the corresponding ridge 
parameters to large values. The effect of a large ridge regression parameter is that the asso­
ciated regression coefficient becomes zero. In contrast, the ridge parameters of the inputs 1, 
2, and the bias input remained very small. The MSE on the test set was 0.0026, basically 
identical to the experiment with the original training set. 

3.3 LEARNING AN INVERSE DYNAMICS MODEL OF A ROBOT ARM 

Robot learning is one of the domains where incremental learning plays an important role. A 
real movement system experiences data at a high rate, and it should incorporate this data 
immediately to improve its performance. As learning is task oriented, input distributions 
will also be task oriented and interference problems can easily arise. Additionally, a real 
movement system does not sample data from a training set but rather has to move in order 
to receive new data. Thus, training data is always temporally correlated, and learning must 
be able to cope with this. An example of such a learning task is given in Figure 4 where a 
simulated 2 DOF robot arm has to learn to draw the figure "8" in two different regions of 
the work space at a moderate speed (1.5 sec duration). In this example, we assume that the 
correct movement plan exists, but that the inverse dynamics model which is to be used to 
control this movement has not been acquired. The robot is first trained for 10 minutes (real 
movement time) in the region of the lower target trajectory where it performs a variety of 
rhythmic movements under simple PID control. The initial performance of this controller is 
shown in the bottom part of Figure 4a. This training enables the robot to learn the locally 
appropriate inverse dynamics model, a ~6 ~ ~2 continuous mapping. Subsequent per-
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Figure 4: Learning to draw the figure "8" with a 2-joint 
arm: (a) Performance of a PID controller before learn­
ing (the dimmed lines denote the desired trajectories, 
the solid lines the actual performance); (b) Perfor­
mance after learning using a PD controller with feed­
forward commands from the learned inverse model; (c) 
Performance of the learned controller after training on 
the upper "8" of (b) (see text for more explanations). 

formance using this inverse model for 
control is depicted in the bottom part 
of Figure 4b. Afterwards, the same 
training takes place in the region of the 
upper target trajectory in order to ac­
quire the inverse model in this part of 
the world. The figure "8" can then 
equally well be drawn there (upper 
part of Figure 4a,b). Switching back to 
the bottom part of the work space 
(Figure 4c), the first task can still be 
performed as before. No interference 
is recognizable. Thus, the robot could 
learn fast and reliably to fulfill the two 
tasks. It is important to note that the 
data generated by the training move­
ments did not always have locally full 
rank. All the parameters of RFWR 
were necessary to acquire the local in­
verse model appropriately. A total of 

39 locally linear experts were generated. 

4. DISCUSSION 
We have introduced an incremental learning algorithm, RFWR, which constructs a network 
of isolated experts for supervised learning of regression tasks. Each expert determines a lo­
cally linear model, a local distance metric, and local bias parameters by incrementally 
minimizing a penalized local cross validation error. Our algorithm differs from other local 
learning techniques by entirely avoiding competition among the experts, and by being 
based on nonparametric instead of parametric statistics. The resulting properties of RFWR 
are a) avoidance of interference in the case of changing input distributions, b) fast incre­
mental learning by means of Newton and second order gradient descent methods, c) ana­
lyzable asymptotic properties which facilitate the selection of the fit parameters, and d) lo­
cal feature detection and dimensionality reduction. The isolated experts are also ideally 
suited for parallel implementations. Future work will investigate computationally less 
costly delta-rule implementations of RFWR, and how well RFWR scales in higher dimen­
sions. 
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