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Abstract 

We have already shown that extracting long-term dependencies from se­
quential data is difficult, both for determimstic dynamical systems such 
as recurrent networks, and probabilistic models such as hidden Markov 
models (HMMs) or input/output hidden Markov models (IOHMMs). In 
practice, to avoid this problem, researchers have used domain specific 
a-priori knowledge to give meaning to the hidden or state variables rep­
resenting past context. In this paper, we propose to use a more general 
type of a-priori knowledge, namely that the temporal dependencIes are 
structured hierarchically. This implies that long-term dependencies are 
represented by variables with a long time scale. This principle is applied 
to a recurrent network which includes delays and multiple time scales. Ex­
periments confirm the advantages of such structures. A similar approach 
is proposed for HMMs and IOHMMs. 

1 Introduction 

Learning from examples basically amounts to identifying the relations between random 
variables of interest. Several learning problems involve sequential data, in which the vari­
ables are ordered (e.g., time series). Many learning algorithms take advantage of this 
sequential structure by assuming some kind of homogeneity or continuity of the model 
over time, e.g., bX sharing parameters for different times, as in Time-Delay Neural Net­
works (TDNNs) tLang, WaIbel and Hinton, 1990), recurrent neural networks (Rumelhart, 
Hinton and Williams, 1986), or hidden Markov models (Rabiner and Juang, 1986). This 
general a-priori assumption considerably simplifies the learning problem. 

In previous papers (Bengio, Simard and Frasconi, 1994· Bengio and Frasconi, 1995a), we 
have shown for recurrent networks and Markovian models that, even with this assumption, 
dependencies that span longer intervals are significantly harder to learn. In all of the 
systems we have considered for learning from sequential data, some form of representation 
of context ( or state) is required (to summarize all "useful" past information). The "hard 
learning" problem IS to learn to represent context, which involves performing the proper 
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credit assignment through time. Indeed, in practice, recurrent networks (e.g., injecting 
prior knowledge for grammar inference (Giles and Omlin, 1992; Frasconi et al., 1993)) 
and HMMs (e.g., for speech recognition (Levinson, Rabiner and Sondhi, 1983; Rabiner 
and Juang, 1986)) work quite well when the representation of context (the meaning of the 
state variable) is decided a-priori . The hidden variable is not any more completely hidden. 
Learning becomes much easier. Unfortunately, this requires a very precise knowledge of 
the appropriate state variables, which is not available in many applications. 

We have seen that the successes ofTDNNs, recurrent networks and HMMs are based on a 
general assumption on the sequential nature of the data. In this paper, we propose another, 
simple, a-priori assumption on the sequences to be analyzed: the temporal dependencies 
have a hierarchical structure. This implies that dependencies spanning long intervals are 
"robust" to small local changes in the timing of events, whereas dependencies spanning 
short intervals are allowed to be more sensitive to the precise timing of events. This yields 
a multi-resolution representation of state information. This general idea is not new and 
can be found in various approaches to learning and artificial intelligence. For example, in 
convolutional neural networks, both for sequential data with TDNNs (Lang, Waibel and 
Hinton, 1990), and for 2-dimensional data with MLCNNs (LeCun et al., 1989; Bengio, 
LeCun and Henderson, 1994), the network is organized in layers representing features 
of increasing temporal or spatial coarseness . Similarly, mostly as a tool for analyzing 
and preprocessing sequential or spatial data, wavelet transforms (Daubechies, 1990) also 
represent such information at mUltiple resolutions. Multi-scale representations have also 
been proposed to improve reinforcement learning systems (Singh , 1992; Dayan and Hinton, 
1993; Sutton, 1995) and path planning systems. However, with these algorithms, one 
generally assumes that the state of the system is observed, whereas, in this paper we 
concentrate on the difficulty of learning what the state variable should represent. A 
related idea using a hierarchical structure was presented in (Schmidhuber, 1992) . 

On the HMM side, several researchers (Brugnara et al., 1992; Suaudeau, 1994) have 
attempted to improve HMMs for speech recognition to better model the different types 
of var1ables, intrmsically varying at different time scales in speech. In those papers, the 
focus was on setting an a-priori representation, not on learning how to represent context. 

In section 2, we attempt to draw a common conclusion from the analyses performed on 
recurrent networks and HMMs to learn to represent long-term dependencies. This will 
justify the proposed approach, presented in section 3. In section 4 a specific hierarchical 
model is proposed for recurrent networks, using different time scales for different layers of 
the network. EXp'eriments performed with this model are described in section 4. Finally, 
we discuss a sim1lar scheme for HMMs and IOHMMs in section 5. 

2 Too Many Products 
In this section, we take another look at the analyses of (Bengio, Simard and Frasconi, 1994) 
and (Bengio and Frasconi, 1995a), for recurrent networks and HMMs respectively. The 
objective 1S to draw a parallel between the problems encountered with the two approaches, 
in order to guide us towards some form of solution, and justify the proposals made here. 
First, let us consider the deterministic dynamical systems (Bengio, Simard and Frasconi, 
1994) (such as recurrent networks), which map an input sequence U1 l . .. , UT to an output 
sequence Y1, . . . , ftr· The state or context information is represented at each time t by a 
variable Xt, for example the activities of all the hidden units of a recurrent network: 

(1) 

where Ut is the system input at time t and 1 is a differentiable function (such as 
tanh(Wxt_1 + ut)). When the sequence of inputs U1, U2, • .. , UT is given, we can write 
Xt = It(Xt-d = It(/t-1( .. . l1(xo)) . . . ). A learning criterion Ct yields gradients on out­
puts, and therefore on the state variables Xt. Since parameters are shared across time, 
learning using a gradient-based algorithm depends on the influence of parameters W on 
Ct through an time steps before t : 

aCt _ " aCt OXt oXT 

oW - L...J OXt OX T oW 
T 

(2) 
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The Jacobian matrix of derivatives .!!:U{J{Jx can further be factored as follows: 
Xr 

(3) 

Our earlier analysis (Bengio, Simard and Frasconi, 1994) shows that the difficulty revolves 
around the matrix product in equation 3. In order to reliably "store" informatIOn in the 
dynamics of the network, the state variable Zt must remain in regions where If:! < 1 
(i.e., near enough to a stable attractor representing the stored information). However, the 
above products then rapidly converge to 0 when t - T increases. Consequently, the sum 
in 2 is dominated by terms corresponding to short-term dependencies (t - T is small). 

Let us now consider the case of Markovian models (including HMMs and IOHMMs (Ben­
gio and Frasconi, 1995b)). These are probabilistic models, either of an "output" 
sequence P(YI . . . YT) (HMMs) or of an output sequence given an input sequence 
P(YI ... YT lUI ... UT) (IOHMMs). Introducing a discrete state variable Zt and using 
Markovian assumptIOns of independence this probability can be factored in terms of tran­
sition probabilities P(ZtIZt-d (or P(ZtIZt-b ut}) and output probabilities P(ytlZt) (or 
P(ytiZt, Ut)) . According to the model , the distribution of the state Zt at time t given the 
state ZT at an earlier time T is given by the matrix 

P(ZtlZT) = P(ZtiZt-I)P(Zt-Ilzt-2) . .. P(zT+dzT) (4) 

where each of the factors is a matrix of transition probabilities (conditioned on inputs in 
the case of IOHMMs) . Our earlier analysis (Bengio and Frasconi, 1995a) shows that the 
difficulty in representing and learning to represent context (i .e., learning what Zt should 
represent) revolves around equation 4. The matrices in the above equations have one 
eigenvalue equal to 1 (because of the normalization constraint) and the others ~ 1. In 
the case in which all eIgenvalues are 1 the matrices have only i's and O's, i.e, we obtain 
deterministic dynamics for IOHMMs or pure cycles for HMMs (which cannot be used to 
model most interesting sequences) . Otherwise the above product converges to a lower 
rank matrix (some or most of the eigenvalues converge toward 0). Consequently, P(ZtlZT) 
becomes more and more independent of ZT as t - T increases. Therefore, both representing 
and learning context becomes more difficult as the span of dependencies increases or when 
the Markov model is more non-deterministic (transition probabilities not close to 0 or 1). 

Clearly, a common trait of both analyses lies in taking too many products, too many time 
steps, or too many transformations to relate the state variable at time T with the state vari­
able at time t > T, as in equations 3 and 4. Therefore the idea presented in the next section 
is centered on allowing several paths between ZT and Zt, some with few "transformations" 
and some with many transformations. At least through those with few transformations, 
we expect context information (forward) , and credit assignment (backward) to propagate 
more easily over longer time spans than through "paths" lDvolving many tralIBformations. 

3 Hierarchical Sequential Models 
Inspired by the above analysis we introduce an assumption about the sequential data to 
be modeled, although it will be a very simple and general a-priori on the structure of the 
data. Basically, we will assume that the sequential structure of data can be described 
hierarchically: long-term dependencies (e.g., between two events remote from each other 
in time) do not depend on a precise time scale (Le., on the precise timing of these events). 
Consequently, in order to represent a context variable taking these long-term dependencies 
into account, we will be able to use a coarse time scale (or a Slowly changing state variable). 

Therefore, instead of a single homogeneous state variable, we will introduce several levels 
of state variables, each "working" at a different time scale. To implement in a discrete­
time system such a multi-resolution representation of context, two basic approaches can 
be considered. Either the higher level state variables change value less often or they 
are constrained to change more slowly at each time step. In our ex~eriments, we have 
considered input and output variables both at the shortest time scale highest frequency), 
but one of the potential advantages of the approach presented here is t at it becomes very 
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Figure 1: Four multi-resolution recurrent architectures used in the experiments. Small 
sguares represent a discrete delay, and numbers near each neuron represent its time scale. 
The architectures B to E have respectively 2, 3, 4, and 6 time scales. 

simple to incorporate input and output variables that operate at different time scales. 
For example, in speech recognition and synthesis, the variable of interest is not only 
the speech signal itself (fast) but also slower-varying variables such as prosodic (average 
energy, pitch, etc ... ) and phonemic (place of articulation, phoneme duration) variables. 
Another example is in the application of learning algorithms to financial and economic 
forecasting and decision taking. Some of the variables of interest are given daily, others 
weekly, monthly, etc ... 

4 Hierarchical Recurrent Neural Network: Experiments 
As in TDNNs (Lang, Waibel and Hinton, 1990) and reverse-TDNNs (Simard and LeCun, 
1992), we will use discrete time delays and subsampling (or oversampling) in order to 
implement the multiple time scales. In the time-unfolded network, paths going through 
the recurrences in the slow varying units (long time scale) will carry context farther, 
while paths going through faster varying units (short time scale) will respond faster to 
changes in input or desired changes in output. Examples of such multi-resolution recurrent 
neural networks are shown in Figure 1. Two sets of simple experiments were performed to 
validate some of the ideas presented in this paper. In both cases, we compare a hierarchical 
recurrent network with a single-scale fully-connected recurrent network. 

In the first set of experiments, we want to evaluate the performance of a hierarchical 
recurrent network on a problem already used for studying the difficulty in learning long­
term dependencies (Bengio, Simard and Frasconi, 1994; Bengio and Frasconi, 1994) . In 
this 2-class J?roblem, the network has to detect a pattern at the beginning of the sequence, 
keeping a blt of information in "memory" (while the inputs are noisy) until the end of 
the sequence (supervision is only a the end of the sequence). As in (Bengio, Simard and 
Frasconi, 1994; Bengio and Frasconi, 1994) only the first 3 time steps contain information 
about the class (a 3-number pattern was randomly chosen for each class within [-1,1]3). 
The length of the sequences is varied to evaluate the effect of the span of input/output 
dependencies. Uniformly distributed noisy inputs between -.1 and .1 are added to the 
initial patterns as well as to the remainder of the sequence. For each sequence length, 10 
trials were run with different initial weights and noise patterns, with 30 training sequences. 
Experiments were performed with sequence of lengths 10, 20,40 and 100. 

Several recurrent network architectures were compared. All were trained with the same 
algorithm (back-propagation through time) to minimize the sum of squared differences 
between the final output and a desired value. The simplest architecture (A) is similar to 
architecture B in Figure 1 but it is not hierarchical: it has a single time scale. Like the 
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Figure 2: Average classification error after training for 2-sequence problem (left, classifica­
tion error) and network-generated data (right, mean squared error), for varying sequence 
lengths and architectures. Each set of 5 consecutive bars represents the performance of 5 
architectures A to E, with respectively 1, 2, 3, 4 and 6 time scales (the architectures B 
to E are shown in Figure 1). Error bars show the standard deviation over 10 trials. 

other networks, it has however a theoretically "sufficient" architecture, i.e., there exists 
a set of weights for which it classifies perfectly the trainin~ sequences. Four of the five 
architectures that we compared are shown in Figure 1, wIth an increasing number of 
levels in the hierarchy. The performance of these four architectures (B to E) as well as 
the architecture with a single time-scale (A) are compared in Figure 2 (left, for the 2-
sequence problem). Clearly, adding more levels to the hierarchy has significantly helped 
to reduce the difficulty in learning long-term dependencies. 

In a second set of experiments, a hierarchical recurrent network with 4 time scales was 
initialized with random (but large) weights and used to generate a data set. To generate 
the inputs as well as the outputs, the network has feedback links from hidden to input 
units . At the initial time step as well as at 5% of the time steps (chosen randomly), 
the input was clamped with random values to introduce some further variability. It is a 
regression task, and the mean squared error is shown on Figure 2. Because of the network 
structure, we expect the data to contain long-term dependencies that can be modeled with 
a hierarchical structure. 100 training sequences of length 10, 20,40 and 100 were generated 
by this network. The same 5 network architectures as in the previous experiments were 
compared (see Figure 1 for architectures B to E), with 10 training trials per network and 
per sequence length. The results are summarized in Figure 2 (right) . More high-level 
hierarchical structure appears to have improved performance for long-term dependencies. 
The fact that the simpler I-level network does not achieve a good performance suggests 
that there were some difficult long-term dependencies in the the artificially generated data 
set. It is interesting to compare those results with those reported in (Lin et al., 1995) which 
show that using longer delays in certain recurrent connections helps learning longer-term 
dependencies. In both cases we find that introducing longer time scales allows to learn 
dependencies whose span is proportionally longer. 

5 Hierarchical HMMs 
How do we represent multiple time scales with a HMM? Some solutions have already been 
proposed in the speech recognition literature, motivated by the obvious presence of differ­
ent time scales in the speech phenomena. In (Brugnara et al., 1992) two Markov chains 
are coupled in a "master/slave" configuration. For the "master" HMM, the observations 
are slowly varying features (such as the signal energy), whereas for the "slave" HMM the 
observations are t.he speech spectra themselves. The two chains are synchronous and op­
erate at the same time scale, therefore the problem of diffusion of credit in HMMs would 
probably also make difficult the learning of long-term dependencies. Note on the other 
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hand that in most applications of HMMs to speech recognition the meaning of states is 
fixed a-priori rather than learned from the data (see (Bengio and Frasconi, 1995a) for a 
discussion). In a more recent contribution, Nelly Suaudeau (Suaudeau, 1994) proposes a 
"two-level HMM" in which the higher level HMM represents "segmental" variables (such 
as phoneme duration). The two levels operate at different scales: the higher level state 
varIable represents the phonetic identity and models the distributions of the average energy 
and the duration within each phoneme. Again, this work is not geared towards learning a 
representation of context, but rather, given the traditional (phoneme-based) representa­
tion of context in speech recognition, towards building a better model of the distribution 
of "slow" segmental variables such as phoneme duration and energy. Another promising 
approach was recently proposed in (Saul and Jordan, 1995). Using decimation techniques 
from statistical mechanics, a polynomial-time algorithm is derived for parallel Boltzmann 
chains (which are similar to parallel HMMs), which can operate at different time scales. 

The ideas presented here point toward a HMM or IOHMM in which the (hidden) state 
variable Xt is represented by the Cartesian product of several state variables Xt, each 
"working" at a different time scale: Xt = (x;, x~, ... I xf).. To take advantage of the 
decomposition, we propose to consider that tbe state dIstrIbutions at the different levels 
are conditionally independent (given the state at the previous time step and at the current 
and previous levels). Transition probabilities are therefore factored as followed: 

(5) 

To force the state variable at a each level to effectively work at a given time scale, self­
transition probabilities are constrained as follows (using above independence assumptions): 

P(x:=i3Ixt_l=iI,.· ., x:_l=i3" . . , xt-l=is) = P(x:=i3Ix:_1 =i3, X::t=i3-d = W3 

6 Conclusion 
Motivated by the analysis of the problem of learning long-term dependencies in sequen­
tial data, i.e., of learning to represent context, we have proposed to use a very general 
assumption on the structure of sequential data to reduce the difficulty of these learning 
tasks. Following numerous previous work in artificial intelligence we are assuming that 
context can be represented with a hierarchical structure. More precisely, here, it means 
that long-term dependencies are insensitive to small timing variations, i.e., they can be 
represented with a coarse temporal scale. This scheme allows context information and 
credit information to be respectively propagated forward and backward more easily. 

Following this intuitive idea, we have proposed to use hierarchical recurrent networks for se­
quence processing. These networks use multiple-time scales to achieve a multi-resolution 
representation of context. Series of experiments on artificial data have confirmed the 
advantages of imposing such structures on the network architecture. Finally we have 
proposed a similar application of this concept to hidden Markov models (for density esti­
mation) and input/output hidden Markov models (for classification and regression). 
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