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Abstract 

This paper discusses the use of multilayer feed forward neural net­
works for predicting a stock's excess return based on its exposure 
to various technical and fundamental factors. To demonstrate the 
effectiveness of the approach a hedged portfolio which consists of 
equally capitalized long and short positions is constructed and its 
historical returns are benchmarked against T-bill returns and the 
S&P500 index. 

1 Introduction 

Traditional investment approaches (Elton and Gruber, 1991) assume that the return 
of a security can be described by a multifactor linear model: 

(1) 

where Hi denotes the return on security i, Fl are a set of factor values and Uil are 
security i exposure to factor I, ai is an intercept term (which under the CAPM 
framework is assumed to be equal to the risk free rate of return (Sharpe, 1984)) 
and ei is a random term with mean zero which is assumed to be uncorrelated across 
securities. 

The factors may consist of any set of variables deemed to have explanatory power for 
security returns . These could be aspects of macroeconomics, fundamental security 
analysis, technical attributes or a combination of the above. The value of a factor 
is the expected excess return above risk free rate of a security with unit exposure to 
the factor and zero exposure to all other factors. The choice offactors can be viewed 
as a proxy for the" state of the world" and their selection defines a metric imposed 
on the universe of securities: Once the factors are set, the model assumption is that, 
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on average, two securities with similar factor loadings (Uil) will behave in a similar 
manner. 

The factor model (1) was not originally developed as a predictive model, but rather 
as an explanatory model, with the returns It; and the factor values Pi assumed to 
be contemporaneous. To utilize (1) in a predictive manner, each factor value must 
be replaced by an estimate, resulting in the model 

A A A 

It; = ai + UilFl + Ui2 F 2 + ... + UiLFL + ei (2) 

where Ri is a security's future return and F/ is an estimate of the future value 
of factor 1, based on currently available information. The estimation of Fl can be 
approached with varying degree of sophistication ranging from a simple use of the 
historical mean to estimate the factor value (setting Fl(t) = Fi), to more elaborate 
approaches attempting to construct a time series model for predicting the factor 
values. 

Factor models of the form (2) can be employed both to control risk and to enhance 
return. In the first case, by capturing the major sources of correlation among 
security returns, one can construct a well balanced portfolio which diversifies specific 
risk away. For the latter, if one is able to predict the likely future value of a factor, 
higher return can be achieved by constructing a portfolio that tilts toward "good" 
factors and away from "bad" ones. 

While linear factor models have proven to be very useful tools for portfolio analysis 
and investment management, the assumption of linear relationship between factor 
values and expected return is quite restrictive. Specifically, the use of linear models 
assumes that each factor affects the return independently and hence, they ignore the 
possible interaction between different factors. Furthermore, with a linear model, the 
expected return of a security can grow without bound as its exposure to a factor 
increases. To overcome these shortcomings of linear models, one would have to 
consider more general models that allow for nonlinear relationship among factor 
values, security exposures and expected returns. 

Generalizing (2), while maintaining the basic premise that the state of the world can 
be described by a vector of factor values and that the expected return of a security 
is determined through its coordinates in this factor world, leads to the nonlinear 
model: 

It; = j(Uil' Ui2,···, UiL, Fl , F2, ... , FL ) + ei (3) 

where JO is a nonlinear function and ei is the noise unexplained by the model, or 
"security specific risk" . 

The prediction task for the nonlinear model (3) is substantially more complex than 
in the linear case since it requires both the estimation of future factor values as 
well as a determination of the unknown function j. The task can be somewhat 
simplified if factor estimates are replaced with their historical means: 

It; J(Uil, Ui2, ... , UiL, lA, F2, ... , FL) + ei 

(4) 

where now Uil are the security's factor exposure at the beginning of the period over 
which we wish to predict . 

To estimate the unknown function t(-), a family of models needs to be selected, 
from which a model is to be identified. In the following we propose modeling the re­
lationship between factor exposures and future returns using the class of multilayer 
feedforward neural networks (Hertz et al., 1991). Their universal approximation 
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capabilities (Cybenko, 1989; Hornik et al., 1989), as well as the existence of an ef­
fective parameter tuning method (the backpropagation algorithm (Rumelhart et al., 
1986)) makes this family of models a powerful tool for the identification of nonlinear 
mappings and hence a natural choice for modeling (4). 

2 The stock selection problem 

Our objective in this paper is to test the ability of neural network based models 
of the form (4) to differentiate between attractive and unattractive stocks. Rather 
than trying to predict the total return of a security, the objective is to predict its 
performance relative to the market, hence eliminating the need to predict market 
directions and movements. 

The data set consists of monthly historical records (1989 through 1995) for the 
largest 1200-1300 US companies as defined by the BARRA HiCap universe. Each 
data record (::::::1300 per month) consists of an input vector composed of a security's 
factor exposures recorded at the beginning of the month and the corresponding 
output is the security's return over the month. The factors used to build the model 
include Earning/Price, Book/Price, past price performance, consensus of analyst 
sentiments etc, which have been suggested in the financial literature as having 
explanatory power for security returns (e.g. (Fama and French, 1992)). To minimize 
risk, exposure to other unwarranted factors is controlled using a quadratic optimizer. 

3 Model construction and testing 

Potentially, changes in a price of a security are a function of a very large number of 
forces and events, of which only a small subset can be included in the factor model 
(4). All other sources of return play the role of noise whose magnitude is probably 
much larger than any signal that can be explained by the factor exposures. When 
this information is used to train a neural network, the network attempts to replicate 
the examples it sees and hence much of what it tries to learn will be the particular 
realizations of noise that appeared in the training set. 

To minimize this effect, both a validation set and regularization are used in the 
training. The validation set is used to monitor the performance of the model with 
data on which it has not been trained on. By stopping the learning process when 
validation set error starts to increase, the learning of noise is minimized. Regular­
ization further limits the complexity of the function realized by the network and, 
through the reduction of model variance, improves generalization (Levin et al., 
1994). 

The stock selection model is built using a rolling train/test window. First, M 
"two layer" feedforward networks are built for each month of data (result is rather 
insensitive to the particular choice of M). Each network is trained using stochastic 
gradient descent with one quarter of the monthly data (randomly selected) used as 
a validation set. Regularization is done using principal component pruning (Levin 
et al., 1994). Once training is completed, the models constructed over N consecutive 
month of data (again, result is insensitive to particular choice of N) are combined 
(thus increasing the robustness of the model (Breiman, 1994)) to predict the returns 
in the following month. Thus the predicted (out of sample) return of stock i in 
month k is given by 

(5) 
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Figure 1 : Average correlation between predicted alphas and realized returns for 
linear and nonlinear models 

where k(k) is stock's i predicted return, N Nk-j(·) denoted the neural network 
model built in month k - j and u71 are stock's i factor exposures as measured at 
the beginning of month k. 

4 Benchmarking to linear 

As a first step in evaluating the added value of the nonlinear model, its performance 
was benchmarked against a generalized least squares linear model. Each model was 
run over three universes: all securities in the HiCap universe, the extreme 200 stocks 
(top 100, bottom 100 as defined by each model), and the extreme 100 stocks. As 
a comparative performance measure we use the Sharpe ratio (Elton and Gruber, 
1991). As shown in Table 4, while the performance of the two models is quite 
comparable over the whole universe of stocks, the neural network based model 
performs better at the extremes, resulting in a substantially larger Sharpe ratio 
(and of course, when constructing a portfolio , it is the extreme alphas that have 
the most impact on performance). 

I Portfolio\Model II Linear Nonlinear II 
All HiCap 6.43 6.92 
100 long/100 short 4.07 5.49 
50 long/50 short 3.07 4.23 

Table 1: Ex ante Sharpe ratios: Neural network vs. linear 

While the numbers in the above table look quite impressive, it should be emphasised 
that they do not represent returns of a practical strategy: turnover is huge and the 
figures do not take transaction costs into account. The main purpose of the table 
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is to compare the information that can be captured by the different models and 
specifically to show the added value of the neural network at the extremes. A 
practical implementation scheme and the associated performance will be discussed 
in the next section. 

Finally, some insight as to the reason for the improved performance can be gained 
by looking at the correlation between model predictions and realized returns for 
different values of model predictions (commonly referred to as alphas). For that, 
the alpha range was divided to 20 cells, 5% of observations in each and correlations 
were calculated separately for each cell. As is shown in figure 1, while both neural 
network and linear model seem to have more predictive power at the extremes, the 
network's correlations are substantially larger for both positive and negative alphas. 

5 Portfolio construction 

Given the superior predictive ability of the nonlinear model at the extremes, a 
natural way of translating its predictions into an investment strategy is through the 
use of a long/short construct which fully captures the model information on both 
the positive as well as the negative side. 

The long/short portfolio (Jacobs and Levy, 1993) is constructed by allocating equal 
capital to long and short positions. By monitoring and controlling the risk charac­
teristics on both sides, one is able to construct a portfolio that has zero correlation 
with the market ((3 = 0) - a "market neutral" portfolio. By construction, the re­
turn of a market neutral portfolio is insensitive to the market up or down swings 
and its only source of return is the performance spread between the long and short 
positions, which in turn is a direct function of the model (5) discernment ability. 

Specifically, the translation of the model predictions into a realistically imple­
mentable strategy is done using a quadratic optimizer. Using the model predicted 
returns and incorporating volatility information about the various stocks, the opti­
mizer is utilized to construct a portfolio with the following characteristics: 

• Market neutral (equal long and short capitalization). 

• Total number of assets in the portfolio <= 200. 

• Average (one sided) monthly turnover ~ 15%. 

• Annual active risk ~ 5%. 

In the following, all results are test set results (out of sample), net of estimated 
transaction costs (assumed to be 1.5% round trip). The standard benchmark for 
a market neutral portfolio is the return on 3 month T-bill and as can be seen 
in Table 2, over the test period the market neutral portfolio has consistently and 
decisively outperformed its benchmark. Furthermore, the results reported for 1995 
were recorded in real-time (simulated paper portfolio). 

An interesting feature of the long/short construct is its ease of transportability (Ja­
cobs and Levy, 1993). Thus, while the base construction is insensitive to market 
movement, if one wishes, full exposure to a desired market can be achieved through 
the use of futures or swaps (Hull, 1993). As an example, by adding a permanent 
S&P500 futures overlay in an amount equal to the invested capital, one is fully 
exposed to the equity market at all time , and returns are the sum of the long/short 
performance spread and the profits or losses resulting from the market price move­
ments. This form of a long/short strategy is referred to as an "equitized" strategy 
and the appropriate benchmark will be overlayed index. The relative performance 
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I Statistics II T-Bill I Neutral II S&P500 I Equitized II 
Total Return~%) 27.8 131.5 102.0 264.5 
Annual total(Yr%) 4.6 16.8 10.4 27.0 
Active Return(%) - 103.7 - 162.5 
Annual active(Yr%) - 12.2 - 16.6 
Active risk(Yr%) - 4.8 - 4.8 
Max draw down(%) - 3.2 13.9 10.0 
Turnover(Y r%) - 198.4 - 198.4 

Table 2: Comparative summary of ex ante portfolio performance (net of transaction 
costs) 8/90 - 12/95 
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Figure 2: Cumulative portfolio value 8/90 - 12/95 (net of estimated transaction 
costs) 

of the equitized strategy with an S&P500 futures overlay is presented in Table 2. 
Summary of the accumulated returns over the test period for the market neutral 
and equitized portfolios compared to T-bill and S&P500 are given in Figure 2. 

Finally, even though the performance of the model is quite good, it is very difficult 
to convince an investor to put his money on a "black box". A rather simple way to 
overcome this problem of neural networks is to utilize a CART tree (Breiman et aI., 
1984) to explain the model's structure. While the performance of the tree on the 
raw data in substantially inferior to the network's , it can serve as a very effective 
tool for analyzing and interpreting the information that is driving the model. 

6 Conclusion 

We presented a methodology by which neural network based models can be used 
for security selection and portfolio construction. In spite of the very low signal to 
noise ratio of the raw data, the model was able to extract meaningful relationship 
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between factor exposures and expected returns. When utilized to construct hedged 
portfolios, these predictions achieved persistent returns with very favorable risk 
characteristics. 

The model is currently being tested in real time and given its continued consistent 
performance, is expected to go live soon. 
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