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Abstract 

Whereas optical character recognition (OCR) systems learn to clas­
sify single characters; people learn to classify long character strings 
in parallel, within a single fixation . This difference is surprising 
because high dimensionality is associated with poor classification 
learning. This paper suggests that the human reading system 
avoids these problems because the number of to-be-classified im­
ages is reduced by consistent and optimal eye fixation positions, 
and by character sequence regularities. 

An interesting difference exists between human reading and optical character recog­
nition (OCR) systems. The input/output dimensionality of character classification 
in human reading is much greater than that for OCR systems (see Figure 1) . OCR 
systems classify one character at time; while the human reading system classifies 
as many as 8-13 characters per eye fixation (Rayner, 1979) and within a fixation, 
character category and sequence information is extracted in parallel (Blanchard, 
McConkie, Zola, and Wolverton, 1984; Reicher, 1969). 
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Figure 1: Character classification versus character sequence classification. 

This is an interesting difference because high dimensionality is associated with poor 
classification learning-the so-called curse of dimensionality (Denker, et ali 1987; 
Geman, Bienenstock, & Doursat, 1992). OCR systems are designed to classify 
single characters to minimize such problems. The fact that most people learn to read 
quite well even with the high dimensional inputs and outputs, implies that variance 
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is somehow lowered in this domain, thereby making accurate classification learning 
possible. The present paper reports on simulations of parallel character classification 
which suggest that variance is lowered through regularities in eye fixation positions 
and in character sequences making up valid words. 

1 Training and Testing Materials 

Training and testing materials were drawn from the story The Wonderful Wizard 
of Oz by L. Frank Baum. Images of text lines were created from 120 pages of text 
(about 160,000 characters, 33,000 total words, or 2,600 different words), which were 
divided into 6 different font and case conditions of 20 pages each. Three different 
fonts (variable and constant-width fonts), and two different cases (all upper-case or 
mixed-case characters) were used. Text line images were normalized with respect 
to height, but not width . All training and test sets contained an equal mix of the 
six font/case conditions. Two generalization sets were used, for test and cross­
validation, and each consisted of about 14,000 characters. 

Dorothy lived in the JDidst of the great Kansas Prairies. 
DOROTHY LIVED IN THE MIDST OF THE GREAT KANSAS PRAIRIES. 
Dorothy lived in the midst of the great Kansas Prairies. 
DOROTHY LIVED IN THE MIDST OF THE GREAT KANSAS PRAIRIES. 
Dorothy 1~ved ~n the m~dst of the great Kansas Pra~r~es. 
DOROTHY LIVED IN THE MIDST OF THE GREAT KANSAS PRAIRIES. 

Figure 2: Samples of the type font and case conditions used in the simulations 

2 Network Architectures 

The simulations used backpropagation networks (Rumelhart, Hinton & Williams, 
1986) that extended the local receptive field , shared-weight architecture used in 
many character-based OCR neural networks (LeCun, et aI, 1989; Martin & Pittman, 
1991) . In the previous single character-based approach, the input to the net is an 
image of a single character. The output is a vector representing the category ofthe 
character . Hidden nodes have local receptive fields that receive input from a spa­
tially local region, (e.g., a 6x6 area) in the preceding layer. Groups of hidden nodes 
share their weights. Corresponding weights in each receptive field are initialized to 
the same value and updated by the same value. Different hidden nodes within a 
group learn to detect the same feature at different locations. A group is depicted 
as hidden nodes within a single plane of a cube that corresponds to a hidden layer. 
Different groups occupy different planes in the cube, and learn to detect different 
features. This architecture biases learning by reducing the number of free parame­
ters available for representing a function. The fact that these nets usually train and 
generalize well in this domain, and that the local feature detectors that emerge are 
similar to the oriented-edge and -line detectors found in mammalian visual cortex 
(Hubel & Wiesel, 1979), suggests that the bias is at least roughly appropriate. 

The extension of this character network to a character-sequence network is illus­
trated in Figure 3, where n (number of to-be-classified characters) is equal to 4. 
Each output node represents a character category (e.g., "D") in one of the nth or­
dinal positions (e.g., "First character on the left") . The size of the input window 
is expanded horizontally to cover at least the n widest characters ( "WWWW") . 
When the character string is made up of relatively narrow characters, more than n 
characters will appear in the input window and the network must learn to ignore 
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them. Increasing input/output dimensionality is accomplished by expanding the 
number of hidden nodes horizontally. Network capacity is described by the depth 
of each hidden layer (the number of different features detected), as well as by the 
width of each hidden layer (the spatial coverage of the network) . 

The network is potentially sensitive to both local and global visual information. 
Local receptive fields build in a sensitivity to letter features. Shared weights make 
learning transfer possible across representations of the same character at different 
positions. Output nodes are globally connected to all the nodes in the second hidden 
layer, but not with one another or with any word-level representations. Networks 
were trained until the training set accuracy failed to improve by at least .1% over 5 
epochs, or overfitting became evident from periodic testing with the generalization 
test set. 

ABC EFOHIJKLMNOP RSTUVWXYZ 
ABCDEFOHIJKLMN PQRSTUVWXYZ 

Local, sharr!d-weight rl'!ceptive /ielcls 

Figure 3: Net architecture for parallel character sequence classification, n=4 chars. 

3 Effects of Dimensionality on Training Difficulty and 
Generalization 

Experiment 1 provides a baseline measure of the impact of dimensionality. Increases 
in dimensionality result in exponential increases in the number of input and output 
patterns and the number of mapping functions . As a result, training problems arise 
due to limitations in network capacity or search scope. Generalization problems 
arise because it becomes impractical to use training sets large enough to obtain a 
good estimate of the underlying function. Four different levels of dimensionality 
were used (see Figure 4), from an input window of 20x20 pixels, with 1 to-be­
classified character to an 80x20 window, with 4 to-be-classified characters ). Input 
patterns were generated by starting the window at the left edge of the text line such 
that the first character was centered 10 pixels from the left of the window, and then 
successively scanning across the text line at each character position . Five training 
set sizes were used (about 700 samples to 50,000). Two relative network capacities 
were used (15 and 18 different feature detectors per hidden layer). Forty different 
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Figure 4: Four levels of input/output dimensionality used in the experiment. 
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networks were trained, one for each combination of dimensionality, training set size 
and relative network capacity (4x5x2). Training difficulty is described by asymptotic 
accuracy achieved on the training set and by amount of training required to reach 
the asymptote. Generalization is reported for both the test set (used to check for 
overfitting) and the cross-validation set. The results (see Figure 5) are consistent 
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Figure 5: Impact of dimensionality on training and generalization. 

with expectations. Increasing dimensionality results in increased training difficulty 
and lower generalization. Since the problems associated with high dimensionality 
occur in both training and test sets, and seem to be alleviated somewhat in the 
high capacity nets, they are presumably due to both capacity/search limitations 
and insufficient sample size, 

4 Regularities in Window Positioning 

One way human reading might reduce the problems associated with high dimen­
sionality is to constrain eye fixation positions during reading; thereby reducing the 
number of different input images the system must learn to classify. Eye movement 
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studies suggest that, although fixation positions within words do vary, there are 
consistencies Rayner, 1979). Moreover, the particular locations fixated, slightly to 
the left of the middle of words, appear to be optimal. People are most efficient at 
recognizing words at these locations (O'Regan & Jacobs, 1992). These fixation posi­
tions reduce variance by reducing the average variability in the positions of ordered 
characters within a word. Position variability increases as a function of distance 
from the fixated character. The average distance of characters within a word is 
minimized when the fixation position is toward the center of a word, as compared 
to when it is at the beginning or end of a word. 

Experiment 2 simulated consistent and optimal positioning with an 80x20 input 
window fixated on the 3rd character. Only words of 3 or more characters were 
fixated (see Figure 6) . The network learned to classify the first 4 characters in the 
word. This condition was compared to a consistent positioning only condition, in 
which the input window was fixated on the first character of a word. Two control 
conditions were also examined. They were replications ofthe 20x20-1Character and 
the 80x20-4 Character conditions of Experiment 1, except that in the first case, the 
network was trained and tested only on the first 4 characters in each word and in 
the second case, the network was trained as before but was tested with the window 
fixated on the first character of the word. Four levels of training set size were used 
and three replications of each training set size x window conditions were run (4 x 4 
x 3 = 48 networks trained and tested). All networks employed 18 different feature 
detectors for each hidden layer. The results (see Figure 7) support the idea that 

Consistent & Optimal 
80x20 - 4 Chars 

I DOfthi --.. "DORO" 

~--""LIVE" 

Consistent Only High Dim. Control 

80x20 - 4 Chars 80x20 - 4 Chars 

'i0roth~ --.. "DORO" ~oroth~ --.. "DORO" 

Low Dim. Control 
2Ox20 - 1 Char 

Figure 6: Window positioning and dimensionality manipulations in Experiment 2 

consistent and optimal positioning reduces variance, as indicated by reductions 
in training difficulties and improved generalization. The consistent and optimal 
positioning networks achieved training and generalization results superior to the 
high dimensionality control condition, and equivalent to, or better than those for 
the low dimensionality control. They were also slightly better than the consistent 
positioning only nets. 

5 Character Sequence Regularities 

Since only certain character sequences are allowed in words, character sequence 
regularities in words may also reduce the number of distinct images the system 
must learn to classify. The system may also reduce variance by optimizing accu­
racy on highest frequency words. These hypotheses were tested by determining 
whether or not the three consistent and optimal positioning networks trained on 
the largest training set in Experiment 2, were more accurate in classifying high fre­
quency words, as compared to low frequency words; and more accurate in classifying 
words as compared to pronounceable non-words or random character strings. The 
control condition used the networks trained in the low dimensional control (20x20 
-1 Character) condition from Experiment 2. Human reading exhibits increased effi­
ciency I accuracy in classifying high frequency as compared to low frequency words 
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Figure 7: Impact of consistent & optimal window positions. 

(Howes & Solomon, 1951; Solomon & Postman, 1952) , and in classifying charac­
ters in words as compared to pronounceable non-words or random character strings 
(Baron & Thurston, 1973; Reicher, 1969). Experiment 3 involved creating a list 
of 30 4-letter words drawn from the Oz text, of which 15 occurred very frequently 
in the text (e.g., SAID), and 15 occurred infrequently (e.g., PAID), and creating 
a list of 30 4-letter pronounceable non-words (e.g., TOlD) and a list of 30 4-letter 
random strings (e.g., SDIA). Each string was reproduced in each of the 6 font Icase 
conditions and labeled to create a test set. One further condition involved creating a 
version of the word list in which the cases of the characters aLtErN aTeD. Psycholo­
gists used this manipulation to demonstrate that the advantages in processing words 
can not simply be due to the use of word-shape feature detectors, since the word 
advantage carries over to the alternating case condition, which destroys word-level 
features (McClelland, 1976). 

Consistent with human reading (see Figure 8), the character-sequence-based net­
works were most accurate on high frequency words and least accurate for low fre­
quency words. The character-sequence-based networks also showed a progressive 
decline in accuracy as the character string became less word-like. The advantage 
for word-like strings can not be due to the use of word shape feature detectors 
because accuracy on aLtErNaTiNg case words, where word shape is unfamiliar, 
remains quite high. 

Word Frequency Effect 

D 

Hgh Fraq Low Fraq 

Character-Sequence-Based 
Consistent & Optimal Positioning 

Word Superiority Effect 

WordS Pmn NonWorcts Random aLtErNaTINg 

• Control condition, 
20x20 single character 

Figure 8: Sensitivity to word frequency and character sequence regularities 
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The present results raise questions about the role played by high dimensionality 
in determining reading disabilities and difficulties. Reading difficulties have been 
associated with reduced perceptual spans (Rayner, 1986; Rayner, et al., 1989), and 
with irregular eye fixation patterns (Rayner & Pollatsek, 1989). This suggests that 
some reading difficulties and disorders may be related to problems in generating the 
precise eye movements necessary to maintain consistent and optimal eye fixations. 
More generally, these results highlight the importance of considering the role of 
character classification in learning to read, particularly since content factors, such 
as word frequency, appear to influence even low-level classification operations. 
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