
Learning long-term dependencies
is not as difficult with NARX networks

Tsungnan Lin*
Department of Electrical Engineering

Princeton University
Princeton, N J 08540

Peter Tiiio
Dept. of Computer Science and Engineering

Slovak Technical University
Ilkovicova 3, 812 19 Bratislava, Slovakia

Abstract

Bill G. Horne
NEC Research Institute

4 Independence Way
Princeton, NJ 08540

c. Lee Gilest
NEC Research Institute

4 Independence Way
Princeton, N J 08540

It has recently been shown that gradient descent learning algo­
rithms for recurrent neural networks can perform poorly on tasks
that involve long-term dependencies. In this paper we explore
this problem for a class of architectures called NARX networks,
which have powerful representational capabilities. Previous work
reported that gradient descent learning is more effective in NARX
networks than in recurrent networks with "hidden states". We
show that although NARX networks do not circumvent the prob­
lem of long-term dependencies, they can greatly improve perfor­
mance on such problems. We present some experimental 'results
that show that NARX networks can often retain information for
two to three times as long as conventional recurrent networks.

1 Introduction

Recurrent Neural Networks (RNNs) are capable of representing arbitrary nonlin­
ear dynamical systems [19, 20]. However, learning simple behavior can be quite

"Also with NEC Research Institute.
tAlso with UMIACS, University of Maryland, College Park, MD 20742

578 T. LIN, B. G. HORNE, P. TINO, C. L. GILES

difficult using gradient descent. For example, even though these systems are 'lUr­
ing equivalent, it has been difficult to get them to successfully learn small finite
state machines from example strings encoded as temporal sequences. Recently, it
has been demonstrated that at least part of this difficulty can be attributed to
long-term dependencies, i.e. when the desired output at time T depends on inputs
presented at times t « T. In [13] it was reported that RNNs were able to learn short
term musical structure using gradient based methods, but had difficulty capturing
global behavior. These ideas were recently formalized in [2], which showed that if
a system is to robustly latch information, then the fraction of the gradient due to
information n time steps in the past approaches zero as n becomes large.

Several approaches have been suggested to circumvent this problem. For exam­
ple, gradient-based methods can be abandoned in favor of alternative optimization
methods [2, 15]. However, the algorithms investigated so far either perform just
as poorly on problems involving long-term dependencies, or, when they are better,
require far more computational resources [2]. Another possibility is to modify con­
ventional gradient descent by more heavily weighing the fraction of the gradient due
to information far in the past, but there is no guarantee that such a modified algo­
rithm would converge to a minima of the error surface being searched [2]. Another
suggestion has been to alter the input data so that it represents a reduced description
that makes global features more explicit and more readily detectable [7, 13, 16, 17].
However, this approach may fail if short term dependencies are equally as impor­
tant. Finally, it has been suggested that a network architecture that operates on
multiple time scales might be useful [5, 6].

In this paper, we also propose an architectural approach to deal with long-term
dependencies [11]. We focus on a class of architectures based upon Nonlinear Au­
toRegressive models with eXogenous inputs (NARX models), and are therefore
called NARX networks [3, 14]. This is a powerful class of models which has recently
been shown to be computationally equivalent to 'lUring machines [18]. Further­
more, previous work has shown that gradient descent learning is more effective
in NARX networks than in recurrent network architectures with "hidden states"
when applied to problems including grammatical inference and nonlinear system
identification [8]. Typically, these networks converge much faster and generalize
better than other networks. The results in this paper give an explanation of this
phenomenon.

2 Vanishing gradients and long-term dependencies

Bengio et al. [2] have analytically explained why learning problems with long- term
dependencies is difficult. They argue that for many practical applications the goal
of the network must be to robustly latch information, i.e. the network must be
able to store information for a long period of time in the presence of noise. More
specifically, they argue that latching of information is accomplished when the states
of the network stay within the vicinity of a hyperbolic attractor, and robustness
to noise is accomplished if the states of the network are contained in the reduced
attracting set of that attractor, i.e. those set of points at which the eigenvalues of
the Jacobian are contained within the unit circle.

In algorithms such as Backpropagation Through Time (BPTT), the gradient of
the cost function function C is written assuming that the weights at different time

Learning Long-term Dependencies Is Not as Difficult with NARX Networks 579

u(k) u(k-l) u(k-2) y(k-3) y(k-2) y(k-l)

Figure 1: NARX network.

indices are independent and computing the partial gradient with respect to these
weights. The total gradient is then equal to the sum of these partial gradients.

It can be easily shown that the weight updates are proportional to

where Yp(T) and d p are the actual and desired (or target) output for the pth
pattern!, x(t) is the state vector of the network at time t and Jx(T,T - T) =
\l xC-r)x(T) denotes the Jacobian of the network expanded over T - T time steps.

In [2], it was shown that if the network robustly latches information, then Jx(T, n)
is an exponentially decreasing function of n, so that limn-too Jx(T, n) = 0 . This
implies that the portion of \l we due to information at times T « T is insignificant
compared to the portion at times near T. This vanishing gradient is the essential
reason why gradient descent methods are not sufficiently powerful to discover a
relationship between target outputs and inputs that occur at a much earlier time.

3 NARX networks

An important class of discrete- time nonlinear systems is the Nonlinear AutoRegres­
sive with eXogenous inputs (NARX) model [3, 10, 12, 21]:

y(t) = f (u(t - Du), ... ,u(t - 1), u(t), y(t - D y),'" ,y(t - 1)) ,

where u(t) and y(t) represent input and output ofthe network at time t, Du and Dy
are the input and output order, and f is a nonlinear function. When the function
f can be approximated by a Multilayer Perceptron, the resulting system is called a
NARX network [3, 14].

In this paper we shall consider NARX networks with zero input order and a one
dimensional output. However there is no reason why our results could not be
extended to networks with higher input orders. Since the states of a discrete-time

lWe deal only with problems in which the target output is presented at the end of the
sequence.

580

0 9

De

(a)

t]., 0 .3

, - ' · 0.6

60

0'

009

DOS
"5
~ OO7

~ O 06
Ii

JOO5
:i
..Q 004
"0

h 03
~

"' 002

DO'

0
0

T. LIN, B. G. HORNE, P. TINO, C. L. GILES

:' 1
~ I ., ,
j ,
i
I

'...\

10 20 30
n

(b)

. 0

Em" 0.3

- ·0. 6

60

Figure 2: Results for the latching problem. (a) Plots of J(t,n) as a function of n.
(b) Plots of the ratio E~~(ltJ(tr) as a function of n .

dynamical system can always be associated with the unit-delay elements in the
realization of the system, we can then describe such a network in a state space form

i=l

i = 2, ... ,D
(1)

with y(t) = Xl (t + 1) .

If the Jacobian of this system has all of its eigenvalues inside the unit circle at each
time step, then the states of the network will be in the reduced attracting set of some
hyperbolic attractor, and thus the system will be robustly latched at that time. As
with any other RNN, this implies that limn-too Jx(t, n) = o. Thus, NARX networks
will also suffer from vanishing gradients and the long- term dependencies problem.
However, we find in the simulation results that follow that NARX networks are
often much better at discovering long-term dependencies than conventional RNNs.

An intuitive reason why output delays can help long-term dependencies can be
found by considering how gradients are calculated using the Backpropagation
Through Time algorithm. BPTT involves two phases: unfolding the network in
time and backpropagating the error through the unfolded network. When a NARX
network is unfolded in time, the output delays will appear as jump-ahead connec­
tions in the unfolded network. Intuitively, these jump-ahead connections provide a
shorter path for propagating gradient information, thus reducing the sensitivity of
the network to long- term dependencies. However, this intuitive reasoning is only
valid if the total gradient through these jump- ahead pathways is greater than the
gradient through the layer-to-layer pathways.

It is possible to derive analytical results for some simple toy problems to show
that NARX networks are indeed less sensitive to long-term dependencies. Here
we give one such example, which is based upon the latching problem described
in [2] . Consider the one node autonomous recurrent network described by, x(t) =
tanh(wx(t - 1)) where w = 1.25, which has two stable fixed points at ±0.710
and one unstable fixed point at zero. The one node, autonomous NARX network

x(t) = tanh (L:~=l wrx(t - r)) has the same fixed points as long as L:?:l Wi = w.

Learning Long-tenn Dependencies Is Not as Difficult with NARX Networks 581

Assume the state of the network has reached equilibrium at the positive stable fixed
point and there are no external inputs . For simplicity, we only consider the Jacobian
J(t, n) = 8~{t~~)' which will be a component of the gradient 'ilwC. Figure 2a shows
plots of J(t, n) with respect to n for D = 1, D = 3 and D = 6 with Wi = wiD.
These plots show that the effect of output delays is to flatten out the curves and
place more emphasis on the gradient due to terms farther in the past. Note that the
gradient contribution due to short term dependencies is deemphasized. In Figure 2b
we show plots of the ratio L::~\tj(t,r) , which illustrates the percentage of the total
gradient that can be attributed to information n time steps in the past. These plots
show that this percentage is larger for the network with output delays, and thus
one would expect that these networks would be able to more effectively deal with
long-term dependencies.

4 Experimental results

4.1 The latching problem

We explored a slight modification on the latching problem described in [2], which
is a minimal task designed as a test that must necessarily be passed in order for
a network to robustly latch information. In this task there are three inputs Ul(t),
U2(t), and a noise input e(t), and a single output y(t) . Both Ul(t) and U2(t) are
zero for all times t> 1. At time t = 1, ul(l) = 1 and u2(1) = 0 for samples from
class 1, and ul(l) = 0 and u2(1) = 1 for samples from class 2. The noise input e(t)
is drawn uniformly from [-b, b] when L < t S T, otherwise e(t) = 0 when t S L.
This network used to solve this problem is a NARX network consisting of a single
neuron,

where the parameters h{ are adjustable and the recurrent weights Wr are fixed 2 .

We fixed the recurrent feedback weight to Wr = 1.251 D, which gives the autonomous
network two stable fixed points at ±0.710, as described in Section 3. It can be
shown [4] that the network is robust to perturbations in the range [-0.155,0.155].
Thus, the uniform noise in e(t) was restricted to this range.

For each simulation, we generated 30 strings from each class, each with a different
e(t). The initial values of h{ for each simulation were also chosen from the same
distribution that defines e(t). For strings from class one, a target value of 0.8 was
chosen, for class two -0.8 was chosen. The network was run using a simple BPTT
algorithm with a learning rate of 0.1 for a maximum of 100 epochs. (We found that
the network converged to some solution consistently within a few dozen epochs.) If
the simulation exceeded 100 epochs and did not correctly classify all strings then
the simulation was ruled a failure. We varied T from 10 to 200 in increments of 2.
For each value of T, we ran 50 simulations. Figure 3a shows a plot of the percentage
of those runs that were successful for each case. It is clear from these plots that

2 Although this description may appear different from the one in [2], it can be shown
that they are actually identical experiments for D = 1.

582

0 9

09

. 0 1
~
~06
~
~05

10 •

" 03

02

0'

.......

'.J "60J'
. Ii' , ,

\

! ,
~ i ! , ,

~.,
... . 0.3
·-·-0.6

T. LIN, B. G. HORNE, P. TINO, C. L. GILES

, _,.. : . .: .

09

" , .
...... ':~ .. ,.'<

... ...

06

04

02

\ ..
'" ·.~Il~

~~~~~~~~~~~~'6~0~'M~~200 ~~~~'0~~'5~~ro--~25--=OO~3~5 ~4~0~4~5~50· 00 20 40 
Langlh 01 InPJI nC.IIIe 

(a) (b) 

Figure 3: (a) Plots of percentage of successful simulations as a function of T, the 
length of the input strings. (b) Plots of the final classification rate with respect to 
different length input strings. 

the NARX networks become increasingly less sensitive to long- term dependencies 
as the output order is increased. 

4.2 The parity problem 

In the parity problem, the task is to classify sequences depending on whether or not 
the number of Is in the input string is odd. We generated 20 strings of different 
lengths from 3 to 5 and added uniformly distributed noise in the range [-0.2,0.2] at 
the end of each string. The length of input noise varied from 0 to 50. We arbitrarily 
chose 0.7 and -0.7 to represent the symbol "1" and "0". The target is only given 
at the end of each string. Three different networks with different number of output 
delays were run on this problem in order to evaluate the capability of the network 
to learn long-term dependencies. In order to make the networks comparable, we 
chose networks in which the number of weights was roughly equal. For networks 
with one to three delays, 5, 4 and 3 hidden neurons were chosen respectively, giving 
21, 21, and 19 trainable weights. Initial weight values were randomly generated 
between -0.5 and 0.5 for 10 trials. 

Fig. 3b shows the average classification rate with respect to different length of input 
noise. When the length of the noise is less than 5, all three of the networks can 
learn all the sequences with the classification rate near to 100%. When the length 
increases to between 10 and 35, the classification rate of networks with one feedback 
delay drops quickly to about 60% while the rate of those networks with two or three 
feedback delays still remains about 80%. 

5 Conclusion 

In this paper we considered an architectural approach to dealing with the problem of 
learning long-term dependencies. We explored the ability of a class of architectures 
called NARX networks to solve such problems. This has been observed previously, 
in the sense that gradient descent learning appeared to be more effective in NARX 



Learning Long-tenn Dependencies Is Not as Difficult with NARX Networks 583 

networks than in RNNs [8]. We presented an analytical example that showed that 
the gradients do not vanish as quickly in NARX networks as they do in networks 
without multiple delays when the network is operating at a fixed point. We also 
presented two experimental problems which show that NARX networks can out­
perform networks with single delays on some simple problems involving long-term 
dependencies. 

We speculate that similar results could be obtained for other networks. In particular 
we hypothesize that any network that uses tapped delay feedback [1, 9] would 
demonstrate improved performance on problems involving long-term dependencies. 

Acknowledgements 

We would like to thank A. Back and Y. Bengio for many useful suggestions. 

References 

(1] A.D. Back and A.C. Tsoi. FIR and IIR synapses, a new neural network architecture for time 
series modeling. Neural Computation, 3(3):375-385, 1991. 

(2] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient is difficult. 
IEEE Trans. on Neural Networks, 5(2):157- 166, 1994. 

(3] S. Chen, S.A. Billings, and P.M. Grant. Non-linear system identification using neural networks. 
International Journal of Control, 51(6):1191-1214, 1990. 

(4] P. Frasconi, M. Gori, M. Maggini, and G. Soda. Unified integration of explicit knowledge and 
learning by example in recurrent networks. IEEE Trans. on Know. and Data Eng.,7(2):340-346, 
1995. 

(5] M. Gori, M. Maggini, and G. Soda. Scheduling of modular architectures for inductive inference of 
regular grammars. In ECAI'94 Work. on Comb. Sym. and Connectionist Proc., pages 78-87. 

(6J S. EI Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependencies. In 
NIPS 8, 1996. (In this Proceedings.) 

(7] S. Hochreiter and J. Schmidhuber. Long short term memory. Technical Report FKI-207-95, 
Technische Universitat Munchen, 1995. 

(8] B.G. Horne and C.L. Giles. An experimental comparison of recurrent neural networks. In NIPS 7, 
pages 697-704, 1995. 

(9J R.R. Leighton and B.C. Conrath. The autoregressive backpropagation algorithm. In Proceedings 
of the International Joint Conference on Neural Networks, volume 2, pages 369-377, July 1991. 

(10] I.J. Leontaritis and S.A. Billings. Input-output parametric models for non-linear systems: Part 
I: deterministic non- linear systems. International Journal of Control, 41(2):303-328, 1985. 

(ll] T .N. Lin, B.G. Horne, P.Tino and C.L. Giles. Learning long-term dependencies is not as difficult 
with NARX recurrent neural networks. Technical Report UMIACS-TR-95-78 and CS-TR-3500, 
Univ. Of Maryland, 1995. 

(12] L. Ljung. System identification: Theory for the user. Prentice-Hall, 1987. 
[13] M. C. Mozer. Induction of multiscale temporal structure. In J.E. Moody, S. J. Hanson, and R.P. 

Lippmann, editors, NIPS 4, pages 275-282, 1992. 
(14] K.S. Narendra and K. Parthasarathy. Identification and control of dynamical systems using neural 

networks. IEEE Trans. on Neural Networks, 1:4-27, March 1990. 
(15] G .V . Puskorius and L.A. Feldkamp. Recurrent network training with the decoupled extended 

Kalman filter. In Proc. 1992 SPIE Con/. on the Sci. of ANN, Orlando, Florida, April 1992. 
(16] J . Schmidhu ber. Learning complex, extended sequences using the principle of history compression. 

In Neural Computation, 4(2):234-242, 1992. 
(17] J. Schmidhuber. Learning unambiguous reduced sequence descriptions. In NIPS 4, pages 291-

298,1992. 
(18] H.T. Siegelmann, B.G. Horne, and C.L. Giles. Computational capabilities of NARX neural net­

works. In IEEE Trans. on Systems, Man and Cybernetics, 1996. Accepted. 
(19] H.T. Siegel mann and E.D. Sontag. On the computational power of neural networks. Journal of 

Computer and System Science, 50(1):132-150, 1995. 
[20] E.D. Sontag. Systems combining linearity and saturations and relations to neural networks. 

Technical Report SYCON-92- 01, Rutgers Center for Systems and Control, 1992. 
(21] H. Su, T. McAvoy, and P. Werbos. Long-term predictions of chemical processes using recurrent 

neural networks: A parallel training approach. Ind. Eng . Chem. Res., 31:1338, 1992. 


