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Abstract 

We present a hypothesis about how the cerebellum could partici­
pate in regulating movement in the presence of significant feedback 
delays without resorting to a forward model of the motor plant. We 
show how a simplified cerebellar model can learn to control end­
point positioning of a nonlinear spring-mass system with realistic 
delays in both afferent and efferent pathways. The model's opera­
tion involves prediction, but instead of predicting sensory input, it 
directly regulates movement by reacting in an anticipatory fashion 
to input patterns that include delayed sensory feedback. 

1 INTRODUCTION 

The existence of significant delays in sensorimotor feedback pathways has led several 
researchers to suggest that the cerebellum might function as a forward model of the 
motor plant in order to predict the sensory consequences of motor commands before 
actual feedback is available; e.g., (Ito, 1984; Keeler, 1990; Miall et ai., 1993). While 
we agree that there are many potential roles for forward models in motor control 
systems, as discussed, e.g., in (Wolpert et al., 1995), we present a hypothesis about 
how the cerebellum could participate in regulating movement in the presence of sig­
nificant feedback delays without resorting to a forward model. We show how a very 
simplified version of the adjustable pattern generator (APG) model being developed 
by Houk and colleagues (Berthier et al., 1993; Houk et al., 1995) can learn to con­
trol endpoint positioning of a nonlinear spring-mass system with significant delays 
in both afferent and efferent pathways. Although much simpler than a multilink 
dynamic arm, control of this spring-mass system involves some of the challenges 
critical in the control of a more realistic motor system and serves to illustrate the 
principles we propose. Preliminary results appear in (Buckingham et al., 1995). 
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Figure 1: Pulse-step control of a movement from initial position :zJo = 0 to target 
endpoint position :zJT = .05. Panel A: Top-The pulse-step command. Middle­
Velocity as a function of time. Bottom-Position as a function of time. Panel B: 
Switching curve. The dashed line plots states of the spring-mass system at which 
the command should switch from pulse to step so that the mass will stick at the 
endpoint :zJT = .05 starting from different initial states. The bold line shows the 
phase-plane trajectory of the movement shown in Panel A. 

2 NONLINEAR VISCOSITY 

An important aspect of the model is that the plant being contolled has a form of 
nonlinear viscosity, brought about in animals through a combination of muscle and 
spinal reflex properties. To illustrate this, we use a nonlinear spring-mass model 
based on studies of human wrist movement (Wu et al., 1990): 

mz + bzt + k(:zJ - :zJeq ) = 0, (1) 

where :zJ is the position (in meters) of an object of mass m (kg) attached to the 
spring, :zJ eq is the resting, or equilibrium, position, b is a damping coefficient, and k 
is the spring's stiffness. Setting m = I, b = 4, and k = 60 produces trajectories that 
are qualitatively similar to those observed in human wrist movement (Wu et al., 
1990). 

This one-fifth power law viscosity gives the system the potential to produce fast 
movements that terminate with little or no oscillation. However, the principle of 
setting the equilibrium position to the desired movement endpoint does not work in 
practice because the system tends to "stick" at non-equilibrium positions, thereafter 
drifting extremely slowly toward the equilibrium position, :zJ eq • We call the position 
at which the mass sticks (which we define as the position at which its absolute 
velocity falls and remains below .005mjs) the endpoint of a movement, denoted :zJ e . 

Thus, endpoint control of this system is not entirely straightforward. The approach 
taken by our model is to switch the value of the control signal, :zJ eq , at a precisely­
placed point during a movement. This is similar to virtual trajectory control, except 
that here the commanded equilibrium position need not equal the desired endpoint 
either before or after the switch. 

Panel A of Fig. 1 shows an example of this type of control. The objective is to 
move the mass from an initial position :zJo = 0 to a target endpoint :zJT = .05. The 
control signal is the pulse-step shown in the top graph, where :zJp = .1 and :zJ. = .04 
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Figure 2: The simplified model. PC, Purkinje cell; MFs, mossy fibers; PFs, parallel 
fibers; CF, climbing fiber. The labels A and B mark places in the feedback loop to 
which we refer in discussing the model's behavior. 

respectively denote the pulse and step values, and d denotes the pulse duration. 
The mass sticks near the target endpoint ZT = .05, which is different from both 
equilibrium positions. If the switch had occurred sooner (later), the mass would 
have undershot (overshot) the target endpoint. 

The bold trajectory in Panel B of Fig. 1 is the phase-plane portrait of this move­
ment. During its initial phase, the state follows the trajectory that would eventually 
lead to equilibrium position zp' When the pulse ends, the state switches to the tra­
jectory that would eventually lead to equilibrium position z" which allows a rapid 
approach to the target endpoint ZT = .05, where the mass sticks before reaching z,. 
The dashed line plots pairs of positions and velocities at which the switch should 
occur so that movements starting from different initial states will reach the endpoint 
ZT = .05. This switching curve has to vary as a function of the target endpoint. 

3 THE MODEL'S ARCHITECTURE 

The simplified model (Fig. 2) consists of a unit representing a Purkinje cell (PC) 
whose input is derived from a sparse expansive encoding of mossy fiber (MF) input 
representing the target position, ZT, which remains fixed throughout a movement, 
delayed information about the state of the spring-mass system, and the current 
motor command, Zeq.l Patterns of MF activity are recoded to form sparse activity 
patterns over a large number (here 8000) of binary parallel fibers (PFs) which 
synapse upon the PC unit, along the lines suggested by Man (Marr, 1969) and the 
CMAC model of Albus (Albus, 1971). While some liberties have been taken with 
this representation, the delay distributions are within the range observed for the 
intermediate cerebellum of the monkey (Van Kan et 01., 1993). 

Also as in Man and Albus, the PC unit is trained by a signal representing the 
activity of a climbing fiber (CF), whose response properties are described below. 
Occasional corrective commands, also discussed below, are assumed to be generated 

1 In this model, 256 Gaussian radial basis function (RBF) units represent the target 
position, 400 RBF units represent the position of the mass (i.e., the length of the spring), 
with centers distributed uniformly across an appropriate range of positions and with delays 
distributed according to a Gaussian of mean 15msec and standard deviation 6msec. This 
distribution is truncated so that the minimum delay is 5msec. This delay distribution 
is represented by 71 in Fig. 2. Another 400 RBF units similarly represent mass velocity. 
An additional 4 MF inputs are efference copy signals that simply copy the current motor 
command. 



A Predictive Switching Model of Cerebellar Movement Control 141 

by an extracerebellar system. The PC's output determines the motor command 
through a simple transformation. The model includes an efferent and CF delays, 
both equal to 20msec (T2 and T3, respectively, in Fig. 2). These delays are also 
within the physiological range for these pathways (Gellman et al., 1983). How this 
model is related to the full APG model and its justification in terms of the anatomy 
and physiology of the cerebellum and premotor circuits are discussed extensively 
elsewhere (Berthier et al., 1993; Houk et al., 1995). 

The PC unit is a linear threshold unit with hysteresis. Let s(t) = I:i Wi(t)4>i(t), 
where 4>i(t) denotes the activity of PF i at time t and Wi(t) is the weight at time 
step t of the synapse by which PF i influences the PC unit. The output of the PC 
unit at time t, denoted y(t), is the PC's activity state, high or low, at time t, which 
represents a high or a low frequency of simple spike activity. PC activation depends 
on two thresholds: (Jhigh and (J,01D < (Jhigh. The activity state switches from low 
to high when s(t) > (Jhigh, and it switches from high to low when s(t) < (J,01lJ. If 
(Jhigh = (J,01D' the PC unit is the usual linear threshold unit. Although hysteresis is 
not strictly necessary for the control task we present here, it accelerates learning: 
A PC can more easily learn when to switch states than it can learn to maintain 
the correct output on a moment-to-moment basis. The bistability of this PC unit 
is a simplified representation of multistability that could be produced by dendritic 
zones of hysteresis arising from ionic mechanisms (Houk et al., 1995). 

Because PC activity inhibits premotor circuits, PC state low corresponds to the 
pulse phase ofthe motor command, which sets a "far" equilibrium position, zp; PC 
state high corresponds to the step phase, which sets a "near" equilibrium position, 
z,. Thus, the pulse ends when the PC state switches from low to high. Because the 
precise switching point determines where the mass sticks, this single binary PC can 
bring the mass to any target endpoint in a considerable range by switching state at 
the right moment during a movement. 

4 LEARNING 

Learning is based on the idea that corrective movements following inaccurate move­
ments provide training information by triggering CF responses. These responses 
are presumed to be proprioceptively triggered by the onset of a corrective move­
ment, being suppressed during the movement itself. Corrective movements can be 
generated when a cerebellar module generates an additional pulse phase of the mo­
tor command, or through the action of a system other than the cerebellum. The 
second, extracerebellar, source of corrective movements only needs to operate when 
small corrections are needed. 

The learning mechanism has to adjust the PC weights, Wi, so that the PC switches 
state at the correct moment during a movement. This is difficult because train­
ing information is significantly delayed due to the combined effects of movement 
duration and delays in the relevant feedback pathways. The relevant PC activity 
is completed well before a corrective movement triggers a CF response. To learn 
under these conditions, the learning mechanism needs to modify synaptic actions 
that occurred prior to the CF's discharge. The APG model adopts Klopf's (Klopf, 
1982) idea of a synaptic "eligibility trace" whereby appropriate synaptic activity 
sets up a synaptically-local memory trace that renders the synapse "eligible" for 
modification if and when the appropriate training information arrives within a short 
time period. 

The learning rule has two components: one implments a form of long-term depres­
sion (LTD); the other implements a much weaker form of long-term potentiation 
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(LTP). It works as follows. Whenever the CF fires (c(t) = 1), the weights of all 
the eligible synapses decrease. A synapse is eligible if its presynaptic parallel fiber 
was active in the past when the PC switched from low to high, with the degree of 
eligibility decreasing with the time since that state switch. This makes the PC less 
likely to switch to high in future situations represented by patterns of PF activity 
similar to the pattern present when the eligibility-initiating switch occurred. This 
has the effect of increasing the duration of the PC pause, which increases the dura­
tion of the pulse phase of the motor command. Superimposed on weight decreases 
are much smaller weight increases that occur for any synapse whose presynaptic 
PF is active when the PC switches from low to high, irrespective of CF activity. 
This makes the PC more likely to switch to high under similar circumstances in the 
future, which decreases the duration of the pulse phase of the movement command. 

To define this mathemati­
cally, let 11(t) detect when the 
PC's activity state switches 
from low to high: 11(t) = 0 
unless y( t - 1) = low and 
y(t) = high, in which case 
11(t) = 1. The eligibility 
trace for synapse i at time step 
t, denoted ei (t), is set to 1 
whenever 11(t) = 1 and there­
after decays geometrically to­
ward zero until it is reset to 1 
when 11 is again set to 1 by an­
other upward switch of PC ac­
tivity level. Then the learning 
rule is given for t = 1,2, ... , 
by: 
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where 0: and ,8, with 0: » ,8, 
are positive parameters respec­
tively determining the rate of 
LTD and LTP. See (Houk 
et al., 1995) for a discussion 

Figure 3: Model behavior. Panel A: early in learn­
ing; Panel B: late in learning. Assume that at time 
step 0, ZT has just been switched from 0 to .05. 
Shown are the time courses of the PC's weighted 
sum, s, activation state, y, and the position and 
velocity of the mass. 

of this learning rule in light of 
physiological data and cellular mechanisms. 

5 SIMULATIONS 

We performed a number of simulations of the simplified APG model learning to 
control the nonlinear spring-mass system. We trained each version of the model to 
move the mass from initial positions selected randomly from the interval [-.02, .02] 
to a target position randomly set to .03, .04, or .05. We set the pulse height, zP' 
and the step height, z" to .1 and .04 respectively. Each simulation consisted of 
a series of trial movements. The parameters of the learning rule, which were not 
optimized, were 0: = .0004 and ,8 = .00004. Eligibility traces decayed 1% per time 
step. 

Figure 3 shows time courses of relevant variables at different stages in learning to 
move to target endpoint ZT = .05 from initial position Zo = O. Early in learning 
(Panel A), the PC has learned to switch to low at the beginning of the trial but 
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switches back to high too soon, which causes the mass to undershoot the target. 
Because of this undershoot, the CF fires at the end of the movement due to a final 
very small corrective movement generated by an extracerebellar system. The mass 
sticks at Ze = .027. Late in learning (Panel B), the mass sticks at Ze = .049, and 
the CF does not fire. Note that to accomplish this, the PC state has to switch to 
high well before (about 150ms) the endpoint is reached. 

Figure 4 shows three representations of the switching curve learned by a version of 
the model for target ZT = .05. As an aid to understanding the model's behavior, all 
the proprioceptive signals in this version of the model had the same delay of 30ms 
(Tl in Fig. 2) instead of the more realistic distribution of delays described above. 
Hence the total loop delay (Tl + T2) was 50ms. The curve labeled "spring switch", 
which closely coincides with the optimal switching curve (also shown), plots states 
that the spring-mass system passes through when the command input to the spring 
switches. In other words, this is the switching curve as seen from the point marked 
A in Fig. 2. That this coincides with the optimal switching curve shows that the 
model learned to behave correctly. The movement trajectory crosses this curve 
about 150ms before the movement ends. 
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Figure 4: Phase-plane portraits of switch­
ing curves implemented by the model af­
ter learning. Four switching curves and 
one movement trajectory are shown. See 
text for explanation. 

The curve labeled "PC switch", on 
the other hand, plots states that the 
spring-mass system passes through 
when the PC unit switches state: it 
is the switching curve as seen from 
the point marked B in Fig. 2 (assum­
ing the expansive encoding involves no 
delay). The state of the spring-mass 
system crosses this curve 20ms before 
it reaches the "spring switch" curve. 
One can see, therefore, that the PC 
unit learned to switch its activity state 
20ms before the motor command must 
switch state at the spring itself, appro­
priately compensating for the 20ms la­
tency of the efferent pathway. 

We can also ask what is the state of the 
spring-mass system that the PC actu­
ally "sees", via proprioceptive signals, 
when it has to switch state. When the 
PC has to switch states, that is, when 

the spring-mass state reaches switching curve "PC switch", the PC is actually re­
ceiving via its PF input a description of the system state that occurred a significant 
time earlier (Tl = 30ms in Fig. 2) . Switching curve "proprioceptive input" in Fig. 4 
is the locus of system states that the PC is sensing when it has to switch. The PC 
has learned to do this by learning, on the basis of delayed CF training information, 
to switch when it sees PF patterns that code spring-mass states that lie on curve 
"proprioceptive input". 

6 DISCUSSION 

The model we have presented is most closely related to adaptive control methods 
known as direct predictive adaptive controllers (Goodwin & Sin, 1984). Feedback 
delays pose no particular difficulties despite the fact that no use is made of a for­
ward model of the motor plant. Instead of producing predictions of proprioceptive 
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feedback, the model uses its predictive capabilities to directly produce appropri­
ately timed motor commands. Although the nonlinear viscosity of the spring-mass 
system renders linear control principles inapplicable, it actually makes the control 
problem easier for an appropriate controller. Fast movements can be performed with 
little or no oscillation. We believe that similar nonlinearities in actual motor plants 
have significant implications for motor control. A critical feature of this model's 
learning mechanism is its use of eligibility traces to bridge the temporal gap between 
a PC's activity and the consequences of this activity on the movement endpoint. 
Cellular studies are needed to explore this important issue. Although nothing in the 
present paper suggests how this might extend to more complex control problems, 
one of the objectives of the full APG model is to explore how the collective behavior 
of multiple APG modules might accomplish more complex control. 
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