
Recurrent Neural Networks for Missing or 
Asynchronous Data 

Yoshua Bengio -
Dept. Informatique et 

Recherche Operationnelle 
Universite de Montreal 
Montreal, Qc H3C-3J7 

bengioy~iro.umontreal.ca 

Abstract 

Francois Gingras 
Dept. Informatique et 

Recherche Operationnelle 
Universite de Montreal 
Montreal, Qc H3C-3J7 

gingra8~iro.umontreal.ca 

In this paper we propose recurrent neural networks with feedback into the input 
units for handling two types of data analysis problems. On the one hand, this 
scheme can be used for static data when some of the input variables are missing. 
On the other hand, it can also be used for sequential data, when some of the 
input variables are missing or are available at different frequencies. Unlike in the 
case of probabilistic models (e.g. Gaussian) of the missing variables, the network 
does not attempt to model the distribution of the missmg variables given the 
observed variables. Instead it is a more "discriminant" approach that fills in the 
missing variables for the sole purpose of minimizing a learning criterion (e.g., to 
minimize an output error). 

1 Introduction 
Learning from examples implies discovering certain relations between variables of interest . The 
most general form of learning requires to essentially capture the joint distribution between these 
variables. However, for many specific problems, we are only interested in predicting the value 
of certain variables when the others (or some of the others) are given. A distinction IS therefore 
made between input variables and output variables. Such a task requires less information (and 
less p'arameters, in the case of a parameterized model) than that of estimating the full joint 
distrIbution. For example in the case of classification problems, a traditional statistical approach 
is based on estimating the conditional distribution of the inputs for each class as well as the 
class prior probabilities (thus yielding the full joint distribution of inputs and classes). A more 
discriminant approach concentrates on estimating the class boundaries (and therefore requires 
less parameters), as for example with a feedforward neural network trained to estimate the output 
class probabilities given the observed variables. 

However, for many learning problems, only some ofthe input variables are given for each partic­
ular training case, and the missing variables differ from case to case. The simplest way to deal 
with this mIssing data problem consists in replacing the missing values by their unconditional 
mean. It can be used with "discriminant" training algorithms such as those used with feed­
forward neural networks. However, in some problems, one can obtain better results by taking 
advantage of the dependencies between the input variables. A simple idea therefore consists 
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Figure 1: Architectures of the recurrent networks in the experiments. On the left a 90-3-4 
architecture for static data with missing values, on the right a 6-3-2-1 architecture with multiple 
time-scales for asynchronous sequential data. Small squares represent a unit delay. The number 
of units in each layer is inside the rectangles . The time scale at which each layer operates is on 
the right of each rectangle. 

in replacing the missing input variables by their conditional expected value, when the observed 
input variables are given. An even better scheme is to compute the expected output given the 
observed inputs, e.g. with a mixture of Gaussian. Unfortunately, this amounts to estimating the 
full joint distribution of all the variables. For example, with ni inputs, capturing the possible 
effect of each observed variable on each missing variable would require O(nl) parameters (at least 
one parameter to capture some co-occurrence statistic on each pair of input variables) . Many 
related approaches have been proposed to deal with missing inputs using a Gaussian (or Gaussian 
mixture) model (Ahmad and Tresp, 1993; Tresp, Ahmad and Neuneier, 1994; Ghahramani and 
Jordan, 1994). In the experiments presented here, the proposed recurrent network is compared 
with a Gaussian mixture model trained with EM to handle missing values (Ghahramani and 
Jordan, 1994). 

The approach proposed in section 2 is more economical than the traditional Gaussian-based 
approaches for two reasons . Firstly, we take advantage of hidden units in a recurrent network, 
which might be less numerous than the inputs . The number of parameters depends on the 
product of the number of hidden units and the number of inputs . The hidden units only need to 
capture the dependencies between input variables which have some dependencies, and which are 
useful to reducing the output error. The second advantage is indeed that training is based on 
optimizing the desired criterion (e.g., reducing an output error), rather than predIcting as well 
as possible the values of the missmg inputs. The recurrent network is allowed to relax for a few 
iterations (typically as few as 4 or 5) in order to fill-in some values for the missing inputs and 
produce an output. In section 3 we present experimental results with this approach, comparing 
the results with those obtained with a feedforward network. 

In section 4 we propose an extension of this scheme to sequential data. In this case, the network 
is not relaxing: inputs keep changing with time and the network maps an input sequence (with 
possibly missing values) to an output sequence. The main advantage of this extension is that 
It allows to deal with sequential data in which the variables occur at different frequencies. This 
type of problem is frequent for example with economic or financial data. An experiment with 
asynchronous data is presented in section 5. 

2 Relaxing Recurrent Network for Missing Inputs 
Networks with feedback such as those proposed in (Almeida, 1987; Pineda, 1989) can be applied 
to learning a static input/output mapping when some of the inputs are missing. In both cases, 
however, one has to wait for the network to relax either to a fixed point (assuming it does find 
one) or to a "stable distribution" (in the case of the Boltzmann machine). In the case of fixed­
point recurrent networks, the training algorithm assumes that a fixed point has been reached. 
The gradient with respect to the weIghts is then computed in order to move the fixed point 
to a more desirable position. The approach we have preferred here avoids such an assumption. 
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Instead it uses a more explicit optimization of the whole behavior of the network as it unfolds 
in time, fills-in the missing inputs and produces an output. The network is trained to minimize 
some function of its output by back-propagation through time. 

Computation of Outputs Given Observed Inputs 
Given: input vector U = [UI, U2, ..• , un,] 
Resul t: output vector Y = [YI, Y2, .. . , Yn.l 

1. Initialize for t = 0: 
For i = 1 ... nu,xo,; f- 0 
For i = 1 . . . n;, if U; is missing then xO,1(;) f- E( i), 

. Else XO,1(i) f- Ui· 
2. Loop over tl.me: 

For t = 1 to T 
For i = 1 ... nu 

If i = I(k) is an input unit and Uk is not missing then 
Xt if-Uk 

Else ' 
Xt,i f- (1- "Y)Xt-I,i + "YfCEles, WIXt_d/,p/) 

where Si is a set of links from unit PI to unit i, 
each with weight WI and a discrete delay dl 
(but terms for which t - dl < 0 were not considered). 

3. Collect outputs by averaging at the end of the sequence: 

Y; f- 'L;=I Vt Xt,O(i) 

Back-Propagation 
The back-propagation computation requireE! an extra set of variables Xt and W, which will contain 
respectively g~ and ~~ after this computation. 

Given: output gradient vector ~; 
Resul t: input gradient ~~ and parameter gradient ae 

aw' 

1. Initialize unit gradients using outside gradient: 
Initialize Xt,; = 0 for all t and i. 
For i = 1 . . . no, initialize Xt,O(;) f- Vt Z~ 

2. Backward loop over time: 
For t = T to 1 

For i = nu ... 1 
If i = I(k) is an input unit and Uk is not missing then 

no backward propagation 
Else 

For IE S; 
1ft - d! > 0 

Xt-d/,p/ f- Xt-d/,p/ + (1 - "Y)Xt-d/+1 

3. Collect input 
For i = 1 .. . ni, 

+ "YwIXt,d'('L/es, WIXt_d/,p/) 

WI f- WI + "Yf'CLAes, WIXt-d/ ,p/)Xt-d/,p/ 
gradients: 

If U; is missing, then 
ae f- 0 au; 

Else 
ae ". au, f- l..Jt Xt,1(;) 

The observed inputs are clamped for the whole duration of the sequence. The missing units 
corresponding to missing inputs are initialized to their unconditional expectation and their value 
is then updated using the feedback links for the rest of the sequence (just as if they were hidden 
units). To help stability of the network and prevent it from finding periodic solutions (in which 
the outputs have a correct output only periodically), output supervision is given for several time 
steps. A fixed vector v, with Vt > 0 and I':t Vt = 1 specifies a weighing scheme that distributes 
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the responsibility for producing the correct output among different time steps. Its purpose is to 
encourage the network to develop stable dynamics which gradually converge toward the correct 
output tthus the weights Vt were chosen to gradually increase with t) . 

The neuron transfer function was a hyperbolic tangent in our experiments. The inertial term 
weighted by , (in step 3 of the forward propagation algorithm below) was used to help the 
network find stable solutions. The parameter, was fixed by hand. In the experiments described 
below, a value of 0.7 was used, but near values yielded similar results. 

This module can therefore be combined within a hybrid system composed of several modules by 
propagating gradient through the combined system (as in (Bottou and Gallinari, 1991)). For 
example, as in Figure 2, there might be another module taking as input the recurrent network's 
output. In this case the recurrent network can be seen as a feature extractor that accepts 
data with missing values in input and computes a set of features that are never missing. In 
another example of hybrid system the non-missing values in input of the recurrent network are 
computed by another, upstream module (such as the preprocessing normalization used in our 
experiments), and the recurrent network would provide gradients to this upstream module (for 
example to better tune its normalization parameters) . 

3 Experiments with Static Data 
A network with three layers (inputs, hidden, outputs) was trained to classify data with miss­
ing values from the audiolD9Y database. This database was made public thanks to Jergen and 
Quinlan, was used by (Barelss and Porter, 1987), and was obtained from the UCI Repository of 
machine learning databases (ftp. ies . ueL edu: pub/maehine-learning-databases). The orig­
inal database has 226 patterns, with 69 attributes , and 24 classes. Unfortunately, most of the 
classes have only 1 exemplar. Hence we decided to cluster the classes into four groups. To do 
so, the average pattern for each of the 24 classes was computed, and the K-Means clustering 
algorithm was then applied on those 24 prototypical class "patterns", to yield the 4 "super­
classes" used in our experiments. The multi-valued input symbolic attributes (with more than 
2 possible values) where coded with a "one-out-of-n" scheme, using n inputs (all zeros except 
the one corresponding to the attribute value). Note that a missing value was represented with a 
special numeric value recognized by the neural network module. The inputs which were constant 
over the training set were then removed. The remaining 90 inputs were finally standardized 
(by computing mean and standard deviation) and transformed by a saturating non-linearity (a 
scaled hyperbolic tangent). The output class ~s coded with a "one-out-of-4" scheme, and the 
recognized class is the one for which the corresponding output has the largest value. 

The architecture of the network is depicted in Figure 1 (left) . The length of each relaxing sequence 
in the experiments was 5. Higher values would not bring any measurable improvements, whereas 
for shorter sequences performance would degrade. The number of hidden units was varied, with 
the best generalization performance obtained using 3 hidden units. 

The recurrent network was compared with feedforward networks as well as with a mixture of 
Gaussians. For the feedforward networks, the missing input values were replaced by their un­
conditional expected value. They were trained to minimize the same criterion as the recurrent 
networksl i .e., the sum of squared differences between network output and desired output. Sev­
eral feedtorward neural networks with varying numbers of hidden units were trained. The best 
generalization was obtained with 15 hidden units. Experiments were also performed with no 
hidden units and two hidden layers (see Table 1) . We found that the recurrent network not only 
generalized better but also learned much faster (although each pattern required 5 times more 
work because of the relaxation), as depicted in Figure 3. 

The recurrent network was also compared with an approach based on a Gaussian and Gaussian 
mixture model of the data. We used the algorithm described in (Ghahramani and Jordan, 
1994) for supervised leaning from incomplete data with the EM algorithm. The whole joint 
input/output distribution is modeled using a mixture model with Gaussians (for the inputs) and 
multinomial (outputs) components: 

P(X = x, C = c) = E P(Wj) (21r)S;I~jll/2 exp{ -~(x _lJj)'Ejl(X -lJj)} 
j 

where x is the input vector , c the output class , and P(Wj) the prior probability of component j of 
the mixture. The IJjd are the multinomial parameters; IJj and Ej are the Gaussian mean vector 
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Figure 2: Example of hybrid modular system, using the recurrent network (middle) to extract 
features from patterns which may have missing values. It can be combined with upstream 
modules (e.g., a normalizing preprocessor, right) and downstream modules (e.g., a static classifier, 
left) . Dotted arrows show the backward flow of gradients. 
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Figure 3: Evolution of training and test error for the recurrent network and for the best of 
the feedforward networks (90-15-4): average classification error w.r.t. training epoch, (with 1 
standard deviation error bars, computed over 10 trials). 

and covariance matrix for component j. Maximum likelihood training is applied as explained 
in (Ghahramani and Jordan, 1994), taking missing values into account (as additional missing 
variables of the EM algorithm). 

For each architecture in Table 1, 10 trainin~ trials were run with a different subset of 200 
training and 26 test patterns (and different initial weights for the neural networks) . The recurrent 
network was dearlr superior to the other architectures, probably for the reasons discussed in the 
conclusion. In addItion, we have shown graphically the rate of convergence during training of the 
best feedforward network (90-15-4) as well as the best recurrent network (90-3-4), in Figure 3. 
Clearly, the recurrent network not only performs better at the end of traming but also learns 
much faster . 

4 Recurrent Network for Asynchronous Sequential Data 

An important problem with many sequential data analysis problems such as those encountered 
in financial data sets is that different variables are known at different frequencies, at different 
times (phase), or are sometimes missing. For example, some variables are given daily, weekly, 
monthly, quarterly, or yearly. Furthermore, some variables may not even be given for some of 
the periods or the precise timing may change (for example the date at which a company reports 
financial performance my vary) . 

Therefore, we propose to extend the algorithm presented above for static data with missing 
values to the general case of sequential data with missing values or asynchronous variables. For 
time steps at which a low-frequency variable is not given, a missing value is assumed in input. 
Again, the feedback links from the hidden and output units to the input units allow the network 
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Table 1: Comparative performances of recurrent network, feedforward network, and Gaussian 
mixture density model on audiology data. The average percentage of classification error is shown 
after training, for both training and test sets, and tlie standard deviation in parenthesis, for 10 
trials. 

Trammg set error Test set error 
90-3-4 Recurrent net 0.3(~ .6 2.~(?(j 
90-6-4 Recurrent net 0(0 3.8(4 
90-25-4 Feedforward net °r6 

15(7.3 
90-15-4 Feedforward net 0.80.4 13.8(7 
90-10-6-4 Feedforward net 1 0.9 16f5.3 
90-6-4 Feedforward net 64.9 298.9 
90-2-4 Feedforward net 18.5? 27(10 
90-4 Feedforward net 22 1 33(8 
1 Gaussian 35 1.6 38 9.3 
4 Gaussians Mixture 36 1.5 38 9.2 
8 Gaussians Mixture 36 2.1 38 9.3 

to "complete" the missing data. The main differences with the static case are that the inputs 
and outputs vary with t (we use Ut and Yt at each time step instead of U and y). The training 
algorithm is otherwise the same. 

5 Experiments with Asynchronous Data 
To evaluate the algorithm, we have used a recurrent network with random weights, and feedback 
links on the input units to generate artificial data. The generating network has 6 inputs 3 
hidden and 1 outputs. The hidden layer is connected to the input layer (1 delay). The hidden 
layer receives inputs with delays 0 and 1 from the input layer and with delay 1 from itself. The 
output layer receives inputs from the hidden layer. At the initial time step as well as at 5% of 
the time steps (chosen randomly), the input units were clamped with random values to introduce 
some further variability. The mlssing values were then completed by the recurrent network. To 
generate asynchronous data, half of the inputs were then hidden with missing values 4 out of every 
5 time steps. 100 training sequences and 50 test sequences were generated. The learning problem 
is therefore a sequence regression problem with mlssing and asynchronous input variables. 

Preliminary comp'arative experiments show a clear advantage to completing the missing values 
(due to the the dlfferent frequencies of the input variables) wlth the recurrent network, as shown 
in Figure 4. The recognition recurrent network is shown on the right of Figure 1. It has multiple 
time scales (implemented with subsampling and oversampling, as in TDNNs (Lang, Waibel and 
Hinton, 1990) and reverse-TDNNs (Simard and LeCun, 1992)), to facilitate the learning of such 
asynchronous data. The static network is a time-delay neural network with 6 input, 8 hidden, 
and 1 output unit, and connections with delays 0,2, and 4 from the input to hidden and hidden to 
output units. The "missing values" for slow-varying variables were replaced by the last observed 
value in the sequence. Experiments with 4 and 16 hidden units yielded similar results. 

6 Conclusion 
When there are dependencies between input variables, and the output prediction can be im­
proved by taking them into account, we have seen that a recurrent network with input feedback 
can perform significantly better than a simpler approach that replaces missing values by their 
unconditional expectation. According to us, this explains the significant improvement brought 
by using the recurrent network instead of a feedforward network in the experiments. 

On the other hand, the large number of input variables (n; = 90, in the experiments) most likely 
explains the poor performance of the mixture of Gaussian model in comparison to both the static 
networks and the recurrent network. The Gaussian model requires estimating O(nn parameters 
and inverting large covariance matrices. 

The aPl?roach to handling missing values presented here can also be extended to sequential data 
with mlssing or asynchronous variables. As our experiments suggest, for such problems, using 
recurrence and multiple time scales yields better performance than static or time-delay networks 
for which the missing values are filled using a heuristic. 
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Figure 4: Test set mean squared error on the asynchronous data. Top: static network with time 
delays. Bottom: recurrent network with feedback to input values to complete missing data. 
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