
Recurrent Neural Networks for Missing or
Asynchronous Data

Yoshua Bengio -
Dept. Informatique et

Recherche Operationnelle
Universite de Montreal
Montreal, Qc H3C-3J7

bengioy~iro.umontreal.ca

Abstract

Francois Gingras
Dept. Informatique et

Recherche Operationnelle
Universite de Montreal
Montreal, Qc H3C-3J7

gingra8~iro.umontreal.ca

In this paper we propose recurrent neural networks with feedback into the input
units for handling two types of data analysis problems. On the one hand, this
scheme can be used for static data when some of the input variables are missing.
On the other hand, it can also be used for sequential data, when some of the
input variables are missing or are available at different frequencies. Unlike in the
case of probabilistic models (e.g. Gaussian) of the missing variables, the network
does not attempt to model the distribution of the missmg variables given the
observed variables. Instead it is a more "discriminant" approach that fills in the
missing variables for the sole purpose of minimizing a learning criterion (e.g., to
minimize an output error).

1 Introduction
Learning from examples implies discovering certain relations between variables of interest . The
most general form of learning requires to essentially capture the joint distribution between these
variables. However, for many specific problems, we are only interested in predicting the value
of certain variables when the others (or some of the others) are given. A distinction IS therefore
made between input variables and output variables. Such a task requires less information (and
less p'arameters, in the case of a parameterized model) than that of estimating the full joint
distrIbution. For example in the case of classification problems, a traditional statistical approach
is based on estimating the conditional distribution of the inputs for each class as well as the
class prior probabilities (thus yielding the full joint distribution of inputs and classes). A more
discriminant approach concentrates on estimating the class boundaries (and therefore requires
less parameters), as for example with a feedforward neural network trained to estimate the output
class probabilities given the observed variables.

However, for many learning problems, only some ofthe input variables are given for each partic­
ular training case, and the missing variables differ from case to case. The simplest way to deal
with this mIssing data problem consists in replacing the missing values by their unconditional
mean. It can be used with "discriminant" training algorithms such as those used with feed­
forward neural networks. However, in some problems, one can obtain better results by taking
advantage of the dependencies between the input variables. A simple idea therefore consists

-also, AT&T Bell Labs, Holmdel, NJ 07733

396 Y. BENGIO, F. GINGRAS

Figure 1: Architectures of the recurrent networks in the experiments. On the left a 90-3-4
architecture for static data with missing values, on the right a 6-3-2-1 architecture with multiple
time-scales for asynchronous sequential data. Small squares represent a unit delay. The number
of units in each layer is inside the rectangles . The time scale at which each layer operates is on
the right of each rectangle.

in replacing the missing input variables by their conditional expected value, when the observed
input variables are given. An even better scheme is to compute the expected output given the
observed inputs, e.g. with a mixture of Gaussian. Unfortunately, this amounts to estimating the
full joint distribution of all the variables. For example, with ni inputs, capturing the possible
effect of each observed variable on each missing variable would require O(nl) parameters (at least
one parameter to capture some co-occurrence statistic on each pair of input variables) . Many
related approaches have been proposed to deal with missing inputs using a Gaussian (or Gaussian
mixture) model (Ahmad and Tresp, 1993; Tresp, Ahmad and Neuneier, 1994; Ghahramani and
Jordan, 1994). In the experiments presented here, the proposed recurrent network is compared
with a Gaussian mixture model trained with EM to handle missing values (Ghahramani and
Jordan, 1994).

The approach proposed in section 2 is more economical than the traditional Gaussian-based
approaches for two reasons . Firstly, we take advantage of hidden units in a recurrent network,
which might be less numerous than the inputs . The number of parameters depends on the
product of the number of hidden units and the number of inputs . The hidden units only need to
capture the dependencies between input variables which have some dependencies, and which are
useful to reducing the output error. The second advantage is indeed that training is based on
optimizing the desired criterion (e.g., reducing an output error), rather than predIcting as well
as possible the values of the missmg inputs. The recurrent network is allowed to relax for a few
iterations (typically as few as 4 or 5) in order to fill-in some values for the missing inputs and
produce an output. In section 3 we present experimental results with this approach, comparing
the results with those obtained with a feedforward network.

In section 4 we propose an extension of this scheme to sequential data. In this case, the network
is not relaxing: inputs keep changing with time and the network maps an input sequence (with
possibly missing values) to an output sequence. The main advantage of this extension is that
It allows to deal with sequential data in which the variables occur at different frequencies. This
type of problem is frequent for example with economic or financial data. An experiment with
asynchronous data is presented in section 5.

2 Relaxing Recurrent Network for Missing Inputs
Networks with feedback such as those proposed in (Almeida, 1987; Pineda, 1989) can be applied
to learning a static input/output mapping when some of the inputs are missing. In both cases,
however, one has to wait for the network to relax either to a fixed point (assuming it does find
one) or to a "stable distribution" (in the case of the Boltzmann machine). In the case of fixed­
point recurrent networks, the training algorithm assumes that a fixed point has been reached.
The gradient with respect to the weIghts is then computed in order to move the fixed point
to a more desirable position. The approach we have preferred here avoids such an assumption.

Recurrent Neural Networks for Missing or Asynchronous Data 397

Instead it uses a more explicit optimization of the whole behavior of the network as it unfolds
in time, fills-in the missing inputs and produces an output. The network is trained to minimize
some function of its output by back-propagation through time.

Computation of Outputs Given Observed Inputs
Given: input vector U = [UI, U2, ..• , un,]
Resul t: output vector Y = [YI, Y2, .. . , Yn.l

1. Initialize for t = 0:
For i = 1 ... nu,xo,; f- 0
For i = 1 . . . n;, if U; is missing then xO,1(;) f- E(i),

. Else XO,1(i) f- Ui·
2. Loop over tl.me:

For t = 1 to T
For i = 1 ... nu

If i = I(k) is an input unit and Uk is not missing then
Xt if-Uk

Else '
Xt,i f- (1- "Y)Xt-I,i + "YfCEles, WIXt_d/,p/)

where Si is a set of links from unit PI to unit i,
each with weight WI and a discrete delay dl
(but terms for which t - dl < 0 were not considered).

3. Collect outputs by averaging at the end of the sequence:

Y; f- 'L;=I Vt Xt,O(i)

Back-Propagation
The back-propagation computation requireE! an extra set of variables Xt and W, which will contain
respectively g~ and ~~ after this computation.

Given: output gradient vector ~;
Resul t: input gradient ~~ and parameter gradient ae

aw'

1. Initialize unit gradients using outside gradient:
Initialize Xt,; = 0 for all t and i.
For i = 1 . . . no, initialize Xt,O(;) f- Vt Z~

2. Backward loop over time:
For t = T to 1

For i = nu ... 1
If i = I(k) is an input unit and Uk is not missing then

no backward propagation
Else

For IE S;
1ft - d! > 0

Xt-d/,p/ f- Xt-d/,p/ + (1 - "Y)Xt-d/+1

3. Collect input
For i = 1 .. . ni,

+ "YwIXt,d'('L/es, WIXt_d/,p/)

WI f- WI + "Yf'CLAes, WIXt-d/ ,p/)Xt-d/,p/
gradients:

If U; is missing, then
ae f- 0 au;

Else
ae ". au, f- l..Jt Xt,1(;)

The observed inputs are clamped for the whole duration of the sequence. The missing units
corresponding to missing inputs are initialized to their unconditional expectation and their value
is then updated using the feedback links for the rest of the sequence (just as if they were hidden
units). To help stability of the network and prevent it from finding periodic solutions (in which
the outputs have a correct output only periodically), output supervision is given for several time
steps. A fixed vector v, with Vt > 0 and I':t Vt = 1 specifies a weighing scheme that distributes

398 Y. BENGIO, F. GINGRAS

the responsibility for producing the correct output among different time steps. Its purpose is to
encourage the network to develop stable dynamics which gradually converge toward the correct
output tthus the weights Vt were chosen to gradually increase with t) .

The neuron transfer function was a hyperbolic tangent in our experiments. The inertial term
weighted by , (in step 3 of the forward propagation algorithm below) was used to help the
network find stable solutions. The parameter, was fixed by hand. In the experiments described
below, a value of 0.7 was used, but near values yielded similar results.

This module can therefore be combined within a hybrid system composed of several modules by
propagating gradient through the combined system (as in (Bottou and Gallinari, 1991)). For
example, as in Figure 2, there might be another module taking as input the recurrent network's
output. In this case the recurrent network can be seen as a feature extractor that accepts
data with missing values in input and computes a set of features that are never missing. In
another example of hybrid system the non-missing values in input of the recurrent network are
computed by another, upstream module (such as the preprocessing normalization used in our
experiments), and the recurrent network would provide gradients to this upstream module (for
example to better tune its normalization parameters) .

3 Experiments with Static Data
A network with three layers (inputs, hidden, outputs) was trained to classify data with miss­
ing values from the audiolD9Y database. This database was made public thanks to Jergen and
Quinlan, was used by (Barelss and Porter, 1987), and was obtained from the UCI Repository of
machine learning databases (ftp. ies . ueL edu: pub/maehine-learning-databases). The orig­
inal database has 226 patterns, with 69 attributes , and 24 classes. Unfortunately, most of the
classes have only 1 exemplar. Hence we decided to cluster the classes into four groups. To do
so, the average pattern for each of the 24 classes was computed, and the K-Means clustering
algorithm was then applied on those 24 prototypical class "patterns", to yield the 4 "super­
classes" used in our experiments. The multi-valued input symbolic attributes (with more than
2 possible values) where coded with a "one-out-of-n" scheme, using n inputs (all zeros except
the one corresponding to the attribute value). Note that a missing value was represented with a
special numeric value recognized by the neural network module. The inputs which were constant
over the training set were then removed. The remaining 90 inputs were finally standardized
(by computing mean and standard deviation) and transformed by a saturating non-linearity (a
scaled hyperbolic tangent). The output class ~s coded with a "one-out-of-4" scheme, and the
recognized class is the one for which the corresponding output has the largest value.

The architecture of the network is depicted in Figure 1 (left) . The length of each relaxing sequence
in the experiments was 5. Higher values would not bring any measurable improvements, whereas
for shorter sequences performance would degrade. The number of hidden units was varied, with
the best generalization performance obtained using 3 hidden units.

The recurrent network was compared with feedforward networks as well as with a mixture of
Gaussians. For the feedforward networks, the missing input values were replaced by their un­
conditional expected value. They were trained to minimize the same criterion as the recurrent
networksl i .e., the sum of squared differences between network output and desired output. Sev­
eral feedtorward neural networks with varying numbers of hidden units were trained. The best
generalization was obtained with 15 hidden units. Experiments were also performed with no
hidden units and two hidden layers (see Table 1) . We found that the recurrent network not only
generalized better but also learned much faster (although each pattern required 5 times more
work because of the relaxation), as depicted in Figure 3.

The recurrent network was also compared with an approach based on a Gaussian and Gaussian
mixture model of the data. We used the algorithm described in (Ghahramani and Jordan,
1994) for supervised leaning from incomplete data with the EM algorithm. The whole joint
input/output distribution is modeled using a mixture model with Gaussians (for the inputs) and
multinomial (outputs) components:

P(X = x, C = c) = E P(Wj) (21r)S;I~jll/2 exp{ -~(x _lJj)'Ejl(X -lJj)}
j

where x is the input vector , c the output class , and P(Wj) the prior probability of component j of
the mixture. The IJjd are the multinomial parameters; IJj and Ej are the Gaussian mean vector

Recurrent Neural Networks for Missing or Asynchronous Data

coat --

down
atllNlm
static
module

UpA'ellm
normalization

module

399

Figure 2: Example of hybrid modular system, using the recurrent network (middle) to extract
features from patterns which may have missing values. It can be combined with upstream
modules (e.g., a normalizing preprocessor, right) and downstream modules (e.g., a static classifier,
left) . Dotted arrows show the backward flow of gradients.

training eet
50r-----~----~----~----~----_,

45

40

35

30

~ 25
20

15

10

5

40

teat .et
50r-----~----~----~----~----_,

45

40

35

30

~ 25
20

15

f •• dforvvard

recurrent

40

Figure 3: Evolution of training and test error for the recurrent network and for the best of
the feedforward networks (90-15-4): average classification error w.r.t. training epoch, (with 1
standard deviation error bars, computed over 10 trials).

and covariance matrix for component j. Maximum likelihood training is applied as explained
in (Ghahramani and Jordan, 1994), taking missing values into account (as additional missing
variables of the EM algorithm).

For each architecture in Table 1, 10 trainin~ trials were run with a different subset of 200
training and 26 test patterns (and different initial weights for the neural networks) . The recurrent
network was dearlr superior to the other architectures, probably for the reasons discussed in the
conclusion. In addItion, we have shown graphically the rate of convergence during training of the
best feedforward network (90-15-4) as well as the best recurrent network (90-3-4), in Figure 3.
Clearly, the recurrent network not only performs better at the end of traming but also learns
much faster .

4 Recurrent Network for Asynchronous Sequential Data

An important problem with many sequential data analysis problems such as those encountered
in financial data sets is that different variables are known at different frequencies, at different
times (phase), or are sometimes missing. For example, some variables are given daily, weekly,
monthly, quarterly, or yearly. Furthermore, some variables may not even be given for some of
the periods or the precise timing may change (for example the date at which a company reports
financial performance my vary) .

Therefore, we propose to extend the algorithm presented above for static data with missing
values to the general case of sequential data with missing values or asynchronous variables. For
time steps at which a low-frequency variable is not given, a missing value is assumed in input.
Again, the feedback links from the hidden and output units to the input units allow the network

400 Y. BENGIO, F. GINGRAS

Table 1: Comparative performances of recurrent network, feedforward network, and Gaussian
mixture density model on audiology data. The average percentage of classification error is shown
after training, for both training and test sets, and tlie standard deviation in parenthesis, for 10
trials.

Trammg set error Test set error
90-3-4 Recurrent net 0.3(~ .6 2.~(?(j
90-6-4 Recurrent net 0(0 3.8(4
90-25-4 Feedforward net °r6

15(7.3
90-15-4 Feedforward net 0.80.4 13.8(7
90-10-6-4 Feedforward net 1 0.9 16f5.3
90-6-4 Feedforward net 64.9 298.9
90-2-4 Feedforward net 18.5? 27(10
90-4 Feedforward net 22 1 33(8
1 Gaussian 35 1.6 38 9.3
4 Gaussians Mixture 36 1.5 38 9.2
8 Gaussians Mixture 36 2.1 38 9.3

to "complete" the missing data. The main differences with the static case are that the inputs
and outputs vary with t (we use Ut and Yt at each time step instead of U and y). The training
algorithm is otherwise the same.

5 Experiments with Asynchronous Data
To evaluate the algorithm, we have used a recurrent network with random weights, and feedback
links on the input units to generate artificial data. The generating network has 6 inputs 3
hidden and 1 outputs. The hidden layer is connected to the input layer (1 delay). The hidden
layer receives inputs with delays 0 and 1 from the input layer and with delay 1 from itself. The
output layer receives inputs from the hidden layer. At the initial time step as well as at 5% of
the time steps (chosen randomly), the input units were clamped with random values to introduce
some further variability. The mlssing values were then completed by the recurrent network. To
generate asynchronous data, half of the inputs were then hidden with missing values 4 out of every
5 time steps. 100 training sequences and 50 test sequences were generated. The learning problem
is therefore a sequence regression problem with mlssing and asynchronous input variables.

Preliminary comp'arative experiments show a clear advantage to completing the missing values
(due to the the dlfferent frequencies of the input variables) wlth the recurrent network, as shown
in Figure 4. The recognition recurrent network is shown on the right of Figure 1. It has multiple
time scales (implemented with subsampling and oversampling, as in TDNNs (Lang, Waibel and
Hinton, 1990) and reverse-TDNNs (Simard and LeCun, 1992)), to facilitate the learning of such
asynchronous data. The static network is a time-delay neural network with 6 input, 8 hidden,
and 1 output unit, and connections with delays 0,2, and 4 from the input to hidden and hidden to
output units. The "missing values" for slow-varying variables were replaced by the last observed
value in the sequence. Experiments with 4 and 16 hidden units yielded similar results.

6 Conclusion
When there are dependencies between input variables, and the output prediction can be im­
proved by taking them into account, we have seen that a recurrent network with input feedback
can perform significantly better than a simpler approach that replaces missing values by their
unconditional expectation. According to us, this explains the significant improvement brought
by using the recurrent network instead of a feedforward network in the experiments.

On the other hand, the large number of input variables (n; = 90, in the experiments) most likely
explains the poor performance of the mixture of Gaussian model in comparison to both the static
networks and the recurrent network. The Gaussian model requires estimating O(nn parameters
and inverting large covariance matrices.

The aPl?roach to handling missing values presented here can also be extended to sequential data
with mlssing or asynchronous variables. As our experiments suggest, for such problems, using
recurrence and multiple time scales yields better performance than static or time-delay networks
for which the missing values are filled using a heuristic.

Recurrent Neural Networks for Missing or Asynchronous Data 401

"().18

0.18

0.104

f 0 .12

i tlme-delay network

j 0 .1

0.08

0.08 ~ ___ -lecurrent network

0 .040 2 ~ 8 8 10 12 1~ 18 18 20
training 4tPOCh

Figure 4: Test set mean squared error on the asynchronous data. Top: static network with time
delays. Bottom: recurrent network with feedback to input values to complete missing data.

References

Ahmad, S. and Tresp, V. (1993) . Some solutions to the missing feature problem in vision . In
Hanson, S. J., Cowan, J. D., and Giles, C. L. , editors , ACivances in Neural Information
Processing Systems 5, San Mateo, CA. Morgan Kaufman Publishers.

Almeida, L. (1987). A learning rule for asynchronous perceptrons with feedback in a combina­
torial environment. In Caudill, M. and Butler, C., editors, IEEE International Conference
on Neural Networks, volume 2, pages 609- 618, San Diego 1987. IEEE, New York.

Bareiss, E. and Porter, B. (1987) . Protos: An exemplar-based learning apprentice. In Proceedings
of the 4th International Workshop on Machine Learning, pages 12-23, Irvine, CA. Morgan
Kaufmann.

Bottou, L. and Gallinari, P. (1991). A framework for the cooperation of learning algorithms. In
Lippman, R. P., Moody, R., and Touretzky, D. S., editors, Advances in Neural Information
Processing Systems 3, pages 781-788, Denver, CO.

Ghahramani, Z. and Jordan, M. I. (1994). Supervised learning from incomplete data via an
EM approach. In Cowan, J. , Tesauro, G. , and Alspector, J. , editors , Advances in Neural
Information Processing Systems 6, page ,San Mateo, CA. Morgan Kaufmann.

Lang) K. J ., Waibel, A. H., and Hinton, G. E. (1990) . A time-delay neural network architecture
tor isolated word recognition . Neural Networks, 3:23- 43 .

Pineda, F. (1989) . Recurrent back-propagation and the dynamical approach to adaptive neural
computation. Neural Computation, 1:161- 172.

Simard, P. and LeCun, Y. (1992) . Reverse TDNN: An architecture for trajectory generation. In
Moody, J ., Hanson, S., and Lipmann, R. , editors, Advances in Neural Information Processing
Systems 4, pages 579- 588, Denver, CO. Morgan Kaufmann, San Mateo.

Tresp, V., Ahmad, S., and Neuneier, R. (1994). Training neural networks with deficient data.
In Cowan, J., Tesauro, G., and Alspector, J., editors, Advances in Neural Information
Processing Systems 6, pages 128-135. Morgan Kaufman Publishers, San Mateo, CA.

