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Abstract 

The classes in classification tasks often have a natural ordering, and the 
training and testing examples are often incomplete. We propose a non­
linear ordinal model for classification into ordered classes. Predictive, 
simulation-based approaches are used to learn from past and classify fu­
ture incomplete examples. These techniques are illustrated by making 
prognoses for patients who have suffered severe head injuries. 

1 Motivation 

Jennett et al. (1979) reported data on patients with severe head injuries. For each patient 
some of the information in Table 1 was available shortly after injury. The objective is to 
predict the degree of recovery attained within six months as measured by outcome. This 
problem exhibits two characteristics that are common in classification tasks: allocation qf 
examples into classes which have a natural ordering, and learning from past and classifying 
future incomplete examples. 

2 A Flexible Model for Ordered Classes 

The Bayes decision rule (see, for example, Ripley, 1996) depends on the loss L(j, k) in­
curred in assigning to class k an object belonging to class j. When better information is 
unavailable, for unordered or nominal classes we treat every mis-classification as equally 
serious: LU, k) is 0 when j = k and 1 otherwise. For ordered classes, when the K classes 
are numbered from 1 to K in their natural order, a better default choice is LU, k) =1 j - k I. 
A class is then given support by its position in the ordering, and the Bayes rule will some­
times assign patterns to classes that do not have maximum posterior probability to avoid 
making a serious error. 



Ordered Classes and Incomplete Examples in Classification 551 

Table 1: Definition of variables with proportion missing. 

Variable Definition Missing % 
age 
emv 
motor 
change 
eye 
pupils 
outcome 

Age in decades (1=0-9, 2=10-19, ... ,8=70+). 
Measure of eye, motor and verbal response to stimulation (1-7). 
Motor response patterns for all limbs (1-7). 
Change in neurological function over the first 24 hours (-1,0,+1). 
Eye indicant. 1 (bad), 2 (impaired), 3 (good). 
Pupil reaction to light. 1 (non-reacting), 2 (reacting). 
Recovery after six months based on Glasgow Outcome Scale. 
1 (dead/vegetative), 2 (severe disability), 3 (moderate/good recovery). 

° 41 
33 
78 
65 
30 

° 

If the classes in a classification problem are ordered the ordering should also be reflected 
in the probability model. Methods for nominal tasks can certainly be used for ordinal 
problems, but an ordinal model should have a simpler parameterization than comparable 
nominal models, and interpretation will be easier. Suppose that an example represented by 
a row vector X belongs to class C = C(X). To make the Bayes-optimal classification it 
is sufficient to know the posterior probabilities p(C = k I X = x). The ordinallogis­
tic regression (OLR) model for K ordered classes models the cumulative posterior class 
probabilities p( C ~ k I X = x) by 

[ p( C ~ k I X = x) ] 
log 1 _ p(C ~ k I X = x) = ¢>k -1](x) k = 1, ... ,K -1, (1) 

for some function 1]. We impose the constraints ¢>1 ~ . . . ~ ¢>K-l on the cut-points to 
ensure thatp(C ~ k I X = x) increases with k. If ¢>o = -00 and ¢>K = 00 then (1) gives 

p(C = k I X = x) = a(¢>k -1](x)) - a(¢>k-l -1](x)) k=l, ... ,K 

where a(x) = 1/(1 + e- X ). McCullagh (1980) proposed linear OLR where 1](x) = x{3. 

The posterior probabilities depend on the patterns x only through 1], and high values of 
1](x) correspond to higher predicted classes (Figure la). This can be useful for interpreting 
the fitted model. However, linear OLR is rather inflexible since the decision boundaries are 
always parallel hyperplanes. Departures from linearity can be accommodated by allowing 
1] to be a non-linear function of the feature space. We extend OLR to non-linear ordinal 
logistic regression (NOLR) by letting 1](x) be the single linear output of a feed-forward 
neural network with input vector x, having skip-layer connections and sigmoid transfer 
functions in the hidden layer (Figure Ib). Then for weights Wij and biases bj we have 

1](x) = 2: WioXCi) + 2: wjoa(bj + 2: WijXCi»), 
i-to j-to i-tj 

where :Li-tj denotes the sum over i such that node i is connected to node j, and node 
o is the single output node. The usual output-unit bias is incorporated in the cut-points. 
Observe that OLR is the special case of NOLR with no hidden nodes. Although the network 
component of NOLR is a universal approximator the NOLR model cannot approximate all 
probability densities arbitrarily well (unlike 'softmax', the most similar nominal method). 

The likelihood for the cut-points l/> = (¢>1, ... ,¢> K -1) and network parameters w given a 
training set T = {(Xi, Ci) Ii = 1, ... ,n} ofn correctly classified examples is 

n n 

£(w, l/» = IIp(Ci I Xi) = II [a(¢>Ci -1](Xi; w)) - a(¢>ci-l -1](Xi; w))] . (2) 
i=l i=l 
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Figure 1: (a) p(k 1 "I) plotted against "I for an OLR model with K = 5 classes and 4> = 
(-7, -6, -3, -1). (b) The network output TJ(x) from a NOLR model used to predict change given 
all other variables (except outcome) predicts that young patients with high emv score are likely to 
improve over first 24 hours. While age and emv are varied, other variables are fixed. Dark shading 
denotes low values ofTJ(x) . The Bayes decision boundaries are shown for loss L(j, k) =1 j - k I. 

If we estimate the classifier by substituting the maximum likelihood estimates we must 
maximize (2) whilst constraining the cut-points to be increasing (Mathieson, 1996). To 
avoid over-fitting we regularize both by weight decay (which is equivalent to putting inde­
pendent Gaussian priors on the network weights) and by imposing independent Gamma pri­
ors on the differences between adjacent cut-points. The minim and is now -log f(w, l/» + 
>..D(w) + E(l/>; t, 0:) with hyperparameters >.. > 0, t, 0: (to be chosen by cross-validation, 
for example, or averaged over under a Bayesian scheme) where D(w) = 2:i,j W;j and 

K-l 

E(l/» = L [t(<Pi - <pi-d + (1 - 0:) log(<pi - <Pi-d] . 
i=2 

3 Classification and Incomplete Examples 

We now consider simulation-based methods for training diagnostic paradigm classifiers 
from incomplete examples, and classifying future incomplete examples. To avoid mod­
elling the missing data we assume that the missing data mechanism is independent of the 
missing values given the observed values (missing at random) and that the missing data and 
data generation mechanisms are independent (ignorable) (Little & Rubin, 1987). This as­
sumption is rarely true but is usually less damaging than adopting crude ad hoc approaches 
to missing values. 

3.1 Learning from Incomplete Examples 

The training set is r = {(xi, Ci) I i = 1, ... ,n} where xi, xi are the observed and 
unobserved parts of the ith example, which belongs to class Ci. Define XO = {xi I 
i = 1, ... ,n} and Xu = {xi I i = 1, ... ,n}, and use C to denote all the classes, so 
r = (XO, C). We assume that C is fully observed. Under the diagnostic paradigm (which 
includes logistic regression and its non-linear and ordinal variants such as 'softmax' and 
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NOLR) we model p( C Ix) by p( C I Xj 8) giving the conditional likelihood 

n n n 

£(8) = IIp(ci I xf;8) = IIIEx:'lxfP(ci I xf,Xi;8) = IExulXo IIp(ci I xf,Xi;8) 
i=1 i=l i=l (3) 

when the examples are independent. The model for p( C Ix) contains no information about 
p(x) and so we construct a model for p(XU I XO) separately using T (Section 3.2). Once we 
can sample xfu' .. ,xfm from p(xf I xi, Ci) a Monte Carlo approximation for £(8) based 
on the last expression of (3) by averaging over repeated imputations of the missing values 
in the training set (Little & Rubin, 1987, and earlier): 

(
1 m n ) 

log£(8) ;:::;; log m ~ 1jP(Ci I xf, xij; 8) . (4) 

Existing algorithms for finding maximum likelihood estimates for 8 allow maximization of 
the individual summands in (4) with respect to 8, but in general the software will require 
extensive modification in order to maximize the average. This problem can be avoided if 
we approximate the arithmetic average over the imputations by a geometric one so that 

( ) 1/m 
£( 8);:::;; TIj TIi p( Ci I xi, xt; 8) . Now the log-posterior averages over the log of the 

likelihoods of the completed training sets, so standard estimation algorithms can be used 
on a training set formed by pooling all completions of the training set, giving each weight 
11m. The approximation log ! I:j Pj ;:::;; ! I:j logpj has been made, where we define 

Pj (8) = TIi p( Ci I xi , xij; 8), although in fact log ! I:j Pj ~ ! I:j log Pj everywhere. 
Suppose that the Pj are well approximated by some function P for the region of interest in 
the parameter space. Then in this region 

I lL 1 Ll 1 L (Pi - p)2 1 L (Pi - p)(Pj - p) og- p._- ogp·;:::;;- -- ---
m J m J 2m P 2m2 p2 

j j i i,j (5) 

and so the approximation will be reasonable when the imputed values have little effect 
on the likelihood of the completed training sets. Note that the approximation cannot be 
improved by increasing m; (5) does not tend to zero as m ---t 00. The relative effects on 
the likelihood of making this approximation and the Monte Carlo approximation (4) will 
be problem specific and dependent on m . 

The predictive approach (Ripley, 1996, for example) incorporates uncertainty in 8 by esti­
matingp(c I x) asp(c I x) = IEOITP(C I x;8). Changing the order of integration gives 

p(C I x) = J p(c I Xj 8)p(8 I T) d8 ex J p(c I x; 8)p(8) IT IExulxfP(Ci I xf, Xi; 8) d8 
\=1 

= IExulXo J p(c I x; 8)p(8) ITp(Ci I xi, Xi; 8) d8 (6) 
i=1 

This justifies applying standard techniques for complete data to build a separate classifier 
using each completed training set, and then averaging the posterior class probabilities that 
they predict. The integral over 8 in (6) will usually require approximation; in particular we 
could average over plug-in estimates toobtainp(c I x);:::;;! I:~1P(C I x; OJ), where OJ is 
the MAP estimate of 8 based only on the jth imputed training set. A more subtle approach 
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Table 2: Classifier performance on 301 complete test examples. See Section 4. 

Training set 
40 complete training examples only 
40 complete + 206 incomplete training examples: 

• Median imputation (In each variable, substitute the median for missing 
values whenever they occur.) 

• Averaging predicted probabilities over 1000 completions of T generated by: 
[> Unconditional imputation (Sample missing values from the 

empirical distribution of each variable in the training set.) 
[> Gibbs sampling from p(XU I xo,,,fJ) 

Pool the 1000 completions from the line above to form a single training set 

Test set loss 
132 

149 

133 
118 
117 

(Ripley, 1994) approximates each posterior by a mixture of Gaussians centred at the local 
maxima Oj1, ... ,0jRj of p( fJ 1 T, X}L) to give 

(7) 

where: N(·; j.£, E) is the Gaussian density function with mean j.£ and covariance matrix 

E, the Hessian Hjr = &()~~&() 10gp(fJ 1 T, XJ') is evaluated at Ojr and, using Laplace's 

approximation, Wjr = p(Ojr 1 T, Xl) 1 Hjr 1- 1/ 2 . We can average over the maxima to get 

p(c 1 x) ~ (m l:j,r Wjr )-ll:j,r P(c I x; Ojr), butthe full-blooded approach samples from 
the 'mixture of mixtures' approximation to p( fJ 1 T) and also uses importance sampling to 
compute the predictive estimates p. 

3.2 The Imputation Model 

We need samples from p(xy I xi, Ci) for each i. When many patterns of missing val­
ues occur it is not practical to model p(XU 1 xo, c) for each pattern, but Markov chain 
Monte Carlo methods can be employed. The Gibbs sampler is convenient and in its most 
basic form requires models for the distribution of each element of x given the others, 
that is p(x(j) 1 x( -j), c) where x( -j) = (X(l), ... ,x(j-1), x(j+1) , ... ,x(p». We model 
these full conditionals parametrically as p( xU) 1 x( - j) , c; 'I/J) and assume here that the pa­
rameters for each of the full conditionals are disjoint, so p(x(j) I x( -j), C; 'I/J(j» where 
'I/J = ('I/J(1), ... ,'I/J(p». When x(j} takes discrete values this is a classification task, and 
for continuous values a regression problem. Under certain conditions the chain of depen­
dent samples of Xu converges in distribution to p( XU I xo, 'I/J) and the ergodic average 
of p(c I xo, XU) converges as required to the predictive estimate p(c I Xo). We usually 
take every wth sample to provide a cover of the space in fewer samples, reducing the com­
putation required to learn the classifier. It is essential to check convergence of the Gibbs 
sampler although we do not give details here. 

If we have sufficient complete examples we might use them to estimate 'I/J to be -J; and 
Gibbs sample from p(XU 1 xo; -J;). Otherwise, in the Bayesian framework, incorporate 'I/J 
into the sampling scheme by Gibbs sampling from p( 'I/J, Xu I XO) (the solution suggested 
by Li, 1988). In the head injury example we report results using the former approach. (The 
latter was found to make little improvement and requires considerably more computation 
time.) 
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Table 3: Predictive approximations for a NOLR model fitted to a single completion T, Xu of the 
training set. The likelihood maxima at {h and {h account for over 0.99 of the posterior probability. 

Posterior probability 
-logp(Oi I T, XU} 
Test set loss: 

• using the plug-in classifier p( c I x; Oi} 
• averaging over 10,000 samples from Gaussian 

3.3 Classifying Incomplete Examples 

0.929 
176.10 

128 
120 

0.071 
174.65 

Predictive: 
149 126 
137 119 

We could build a separate classifier for each pattern of missing data that occurs, but this 
can be computationally expensive, will lose information and the classifiers need not make 
consistent predictions. We know that p(c I XO) = IExulxop(c I xo, XU) so it seems better 
to classify Xo by averaging over repeated imputations of XU from the imputation model. 

4 Prognosis After Head Injury 

We now return to the head injury prognosis example to learn a NOLR classifier from a 
training set containing 40 complete and 206 incomplete examples. The NOLR architec­
ture (4 nodes, skip-layer connections and A = 0.01) was selected by cross-validation on 
a single imputation of the training set, and we use a predictive approximation. 1 Table 2 
shows the performance of this classifier on a test set of 301 complete examples and loss 
L (j, k) = I j - k I for different strategies for dealing with the missing values. For imputation 
by Gibbs sampling we modelled each of the full conditionals using NOLR because all vari­
ables in this dataset are ordinal. Categorical inputs to models are put in as level indicators, 
so change corresponds to two indicators taking values (0,0), (1,0) and (1,1). Throughout 
this example we predict age, emv and motor as categorical variables but treat them as con­
tinuous inputs to models. Models were selected by cross-validation based on the complete 
training examples only and used the predictive approximation described above. Several full 
conditionals benefited from a non-linear model. 

We now classify 199 incomplete test examples using the classifier found in the last line 
of Table 2. Median imputation of missing values in the test set incurs loss 132 whereas 
unconditional imputation incurs loss 106. The Gibbs sampling imputation model incurs 
loss 91 and is predicting probabilities accurately (Figure 2). Michie et al. (1994) and 
references therein give alternative analyses of the head injury data. 

NOLR has provided an interpretable network model for ordered classes, the missing data 
strategy successfully learns from incomplete training examples and classifies incomplete 
future examples, and the predictive approach is beneficial. 

IFor each completion T, X jU of the training set we form a mixture approximation (7) to p(O I 
T, XjU }, sample from this 10,000 times and average the predicted probabilities. These predictions are 
averaged over completions. Maxima were found by running the optimizer 50 times from randomized 
starting weights. Up to 26 distinct maxima were found and approximately 5 generally accounted 
for over 95% of the posterior probability in most cases. Table 3 gives an example: averaging over 
maxima has greater effect than sampling around them, although both are useful. The cut-points cI> 
in the NOLR model must satisfy order constraints, so we rejected samples of () where these did not 
hold. However, the parameters were sufficiently well determined that this occurred in less than 0.5% 
of samples. 
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severe disability 
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Figure 2: (a) Test set calibration for median imputation (dashed) and conditional imputation (solid). 
For predictions by conditional imputation we average p( c 1 xo, XU) over 100 pseudo-independent 
samples from p(XU 1 Xo). Ticks on the lower (upper) axis denote predicted probabilities for the 
test examples using median (conditional) imputation. (b) In 100 pseudo-independent conditional 
imputations of the missing parts XU of a particular incomplete test example eight distinct values xf 
(i = 1, . . . ,8) occur. (Recall that all components of x are discrete.) For each distinct imputation 
we plot a circle with centre corresponding to (p(1 1 xO,xf),p(2 1 xO,xf),p(3 1 xO,xf)) and 
area proportional to the number of occurrences of xf in the 100 imputations. The prediction by 
median imputation is located by x; the average prediction over conditional imputations is located 
by • . Actual outcome is 'good recovery'. The conditional method correctly classifies the example 
and shows that the example is close to the Bayes decision boundary under loss L(j, k) =1 j - k 1 
(dashed). Median imputation results in a confident and incorrect classification. 

Software: A software library for fitting NOLR models in S-Plus is available at URL 
http://www.stats.ox.ac.uk/-mathies 
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