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We have calculated analytical expressions for how the bias and 
variance of the estimators provided by various temporal difference 
value estimation algorithms change with offline updates over trials 
in absorbing Markov chains using lookup table representations. We 
illustrate classes of learning curve behavior in various chains, and 
show the manner in which TD is sensitive to the choice of its step­
size and eligibility trace parameters. 

1 INTRODUCTION 

A reassuring theory of asymptotic convergence is available for many reinforcement 
learning (RL) algorithms. What is not available, however, is a theory that explains 
the finite-term learning curve behavior of RL algorithms, e.g., what are the different 
kinds of learning curves, what are their key determinants, and how do different 
problem parameters effect rate of convergence. Answering these questions is crucial 
not only for making useful comparisons between algorithms, but also for developing 
hybrid and new RL methods. In this paper we provide preliminary answers to some 
of the above questions for the case of absorbing Markov chains, where mean square 
error between the estimated and true predictions is used as the quantity of interest 
in learning curves. 

Our main contribution is in deriving the analytical update equations for the two 
components of MSE, bias and variance, for popular Monte Carlo (MC) and TD(A) 
(Sutton, 1988) algorithms. These derivations are presented in a larger paper. Here 
we apply our theoretical results to produce analytical learning curves for TD on 
two specific Markov chains chosen to highlight the effect of various problem and 
algorithm parameters, in particular the definite trade-offs between step-size, Q, and 
eligibility-trace parameter, A. Although these results are for specific problems, we 
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believe that many ofthe conclusions are intuitive or have previous empirical support, 
and may be more generally applicable. 

2 ANALYTICAL RESULTS 

A random walk , or trial, in an absorbing Markov chain with only terminal payoffs 
produces a sequence of states terminated by a payoff. The prediction task is to 
determine the expected payoff as a function of the start state i, called the optimal 
value function, and denoted v.... Accordingly, vi = E {rls1 = i}, where St is the 
state at step t, and r is the random terminal payoff. The algorithms analysed are 
iterative and produce a sequence of estimates of v" by repeatedly combining the 
result from a new trial with the old estimate to produce a new estimate. They have 
the form: viet) = Viet - 1) + a(t)oi(t) where vet) = {Viet)} is the estimate of the 
optimal value function after t trials, Oi (t) is the result for state i based on random 
trial t, and the step-size a( t) determines how the old estimate and the new result 
are combined. The algorithms differ in the os produced from a trial. 

Monte Carlo algorithms use the final payoff that results from a trial to define the 
Oi(t) (e.g., Barto & Duff, 1994). Therefore in MC algorithms the estimated value ofa 
state is unaffected by the estimated value of any other state. The main contribution 
of TD algorithms (Sutton, 1988) over MC algorithms is that they update the value 
of a state based not only on the terminal payoff but also on the the estimated 
values of the intervening states. When a state is first visited, it initiates a short­
term memory process, an eligibility trace, which then decays exponentially over time 
with parameter A. The amount by which the value of an intervening state combines 
with the old estimate is determined in part by the magnitude of the eligibility trace 
at that point. 

In general, the initial estimate v(O) could be a random vector drawn from some 
distribution, but often v(O) is fixed to some initial value such as zero. In either case, 
subsequent estimates, vet); t > 0, will be random vectors because of the random os . 

The random vector v( t) has a bias vector b( t) d~ E {v( t) - v"'} and a covariance 

matrix G(t) d~ E{(v(t) - E{v(t)})(v(t) - E{v(t)})T}. The scalar quantity of 
interest for learning curves is the weighted MSE as a function of trial number t, and 
is defined as follows: 

MSE(t) = l:i Pi(E{(Vi(t) - vi?}) = l:i pi(bl(t) + Gii(t», 
where Pi = {JJT [I - QJ -1 )d l:j (J.'T [I - QJ -1)j is the weight for state i, which is the 
expected number of visits to i in a trial divided by the expected length of a trial1 

(J.'i is the probability of starting in state i; Q is the transition matrix of the chain). 

In this paper we present results just for the standard TD(A) algorithm (Sutton, 
1988), but we have analysed (Singh & Dayan, 1996) various other TD-like algorithms 
(e.g., Singh & Sutton, 1996) and comment on their behavior in the conclusions. Our 
analytical results are based on two non-trivial assumptions: first that lookup tables 
are used, and second that the algorithm parameters a and A are functions of the 
trial number alone rather than also depending on the state. We also make two 
assumptions that we believe would not change the general nature of the results 
obtained here: that the estimated values are updated offline (after the end of each 
trial), and that the only non-zero payoffs are on the transitions to the terminal 
states. With the above caveats, our analytical results allow rapid computation of 
exact mean square error (MSE) learning curves as a function of trial number. 

10t her reasonable choices for the weights, PI, would not change the nature of the results 
presented here. 
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2.1 BIAS, VARIANCE, And MSE UPDATE EQUATIONS 

The analytical update equations for the bias, variance and MSE are complex and 
their details are in Singh & Dayan (1996) - they take the following form in outline: 

b(t) 

C(t) 

am + Bmb(t - 1) 

AS + BSC(t - 1) + IS (b(t - 1» 

(1) 

(2) 

where matrix Bm depends linearly on a(t) and BS and IS depend at most quadrat­
ically on a(t). We coded this detail in the C programming language to develop a 
software tool2 whose rapid computation of exact MSE error curves allowed us to ex­
periment with many different algorithm and problem parameters on many Markov 
chains. Of course, one could have averaged together many empirical MSE curves 
obtained via simulation of these Markov chains to get approximations to the an­
alytical MSE error curves, but in many cases MSE curves that take minutes to 
compute analytically take days to derive empirically on the same computer for five 
significant digit accuracy. Empirical simulation is particularly slow in cases where 
the variance converges to non-zero values (because of constant step-sizes) with long 
tails in the asymptotic distribution of estimated values (we present an example in 
Figure lc). Our analytical method, on the other hand, computes exact MSE curves 
for L trials in O( Istate space 13 L) steps regardless of the behavior of the variance 
and bias curves. 

2.2 ANALYTICAL METHODS 

Two consequences of having the analytical forms of the equations for the update 
of the mean and variance are that it is possible to optimize schedules for setting a 
and A and, for fixed A and a, work out terminal rates of convergence for band C. 

Computing one-step optimal a's: Given a particular A, the effect on the MSE 
of a single step for any of the algorithms is quadratic in a. It is therefore straight­
forward to calculate the value of a that minimises MSE(t) at the next time step. 
This is called the greedy value of a. It is not clear that if one were interested 
in minimising MSE(t + t'), one would choose successive a(u) that greedily min­
imise MSE(t); MSE(t + 1); .... In general, one could use our formulre and dynamic 
programming to optimise a whole schedule for a( u), but this is computationally 
challenging. 

Note that this technique for setting greedy a assumes complete knowledge about 
the Markov chain and the initial bias and covariance of v(O), and is therefore not 
directly applicable to realistic applications of reinforcement learning. Nevertheless, 
it is a good analysis tool to approximate omniscient optimal step-size schedules, 
eliminating the effect of the choice of a when studying the effect of the A. 

Computing one-step optimal A'S: Calculating analytically the A that would 
minimize MSE(t) given the bias and variance at trial t - 1 is substantially harder 
because terms such as [/ - A(t)Q]-l appear in the expressions. However, since it is 
possible to compute MSE(t) for any choice of A, it is straightforward to find to any 
desired accuracy the Ag(t) that gives the lowest resulting MSE(t). This is possible 
only because MSE(t) can be computed very cheaply using our analytical equations. 

The caveats about greediness in choosing ag{t) also apply to Ag(t). For one of the 
Markov chains, we used a stochastic gradient ascent method to optimise A( u) and 

2The analytical MSE error curve software is available via anonymous ftp from the 
following address: ftp.cs.colorado.edu /users/baveja/ AMse. tar.Z 
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a( u) to minimise MSE( t + tf) and found that it was not optimal to choose Ag (t) 
and ag(t) at the first step. 

Computing terminal rates of convergence: In the update equations 1 and 2, 
. b(t) depends linearly on b(t - 1) through a matrix Bm; and C(t) depends linearly 
on C(t - 1) through a matrix B S . For the case of fixed a and A, the maximal and 
minimal eigenvalues of Bm and B S determine the fact and speed of convergence 
of the algorithms to finite endpoints. If the modulus of the real part of any of 
the eigenvalues is greater than 1, then the algorithms will not converge in general. 
We observed that the mean update is more stable than the mean square update, 
i.e., appropriate eigenvalues are obtained for larger values of a (we call the largest 
feasible a the largest learning rate for which TD will converge). Further, we know 
that the mean converges to v" if a is sufficiently small that it converges at all, 
and so we can determine the terminal covariance. Just like the delta rule, these 
algorithms converge at best to an (-ball for a constant finite step-size. This amounts 
to the MSE converging to a fixed value, which our equations also predict. Further, 
by calculating the eigenvalues of B m , we can calculate an estimate of the rate of 
decrease of the bias. 

3 LEARNING CURVES ON SPECIFIC MARKOV 
CHAINS 

We applied our software to two problems: a symmetric random walk (SRW), and a 
Markov chain for which we can control the frequency of returns to each state in a 
single run (we call this the cyclicity of the chain). 
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Figure 1: Comparing Analytical and Empirical MSE curves. a) analytical and empirical 
learning curves obtained on the 19 state SRW problem with parameters Ci = 0.01, ,\ = 0.9. 
The empirical curve was obtained by averaging together more than three million simulation 
runs, and the analytical and empirical MSE curves agree up to the fourth decimal place; 
b) a case where the empirical method fails to match the analytical learning curve after 
more than 15 million runs on a 5 state SRW problem. The empirical learning curve is 
very spiky. c) Empirical distribution plot over 15.5 million runs for the MSE at trial 198. 
The inset shows impulses at actual sample values greater than 100. The largest value is 
greater than 200000. 

Agreement: First, we present empirical confirmation of our analytical equations 
on the 19 state SRW problem. We ran TD(A) for specific choices of a and A for more 
than three million simulation runs and averaged the resulting empIrical weighted 
MSE error curves. Figure la shows the analytical and empirical learning curves, 
which agree to within four decimal places. 

Long-Tails of Empirical MSE distribution: There are cases in which the agree­
ment is apparently much worse (see Figure Ib). This is because of the surprisingly 
long tails for the empirical MSE distribution - Figure lc shows an example for a 5 
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state SRW. This points to interesting structure that our analysis is unable to reveal. 

Effect of a and A: Extensive studies on the 19 state SRW that we do not have 
space to describe fully show that: HI) for each algorithm, increasing a while holding 
A fixed increases the asymptotic value of MSE, and similarly for increasing A whilst 
holding a constant; H2) larger values of a or A (except A very close to 1) lead 
to faster convergence to the asymptotic value of MSE if there exists one; H3) in 
general, for each algorithm as one decreases A the reasonable range of a shrinks, 
i.e., larger a can be used with larger A without causing excessive MSE. The effect 
in H3 is counter-intuitive because larger A tends to amplify the effective step-size 
and so one would expect the opposite effect. Indeed, this increase in the range of 
feasible a is not strictly true, especially very near A = 1, but it does seem to hold 
for a large range of A. 

Me versus TD(A): Sutton (1988) and others have investigated the effect of A 
on the empirical MSE at small trial numbers and consistently shown that TD is 
better for some A < 1 than MC (A = 1). Figure 2a shows substantial changes as a 
function of trial number in the value of A that leads to the lowest MSE. This effect 
is consistent with hypotheses HI-H3. Figure 2b confirms that this remains true 
even if greedy choices of a tailored for each value of A are used. Curves for different 
values of A yield minimum MSE over different trial number segments. We observed 
these effects on several Markov chains. 

a) b) Accumulate 
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Figure 2: U-shaped Curves. a) Weighted MSE as a function of A and trial number for 
fixed ex = 0.05 (minimum in A shown as a black line). This is a 3-d version of the U-shaped 
curves in Sutton (1988), with trial number being the extra axis. b) Weighted MSE as a 
function of trial number for various A using greedy ex. Curves for different values of A yield 
minimum MSE over different trial number segments. 

Initial bias: Watkins (1989) suggested that A trades off bias for variance, since A ..... 
1 has low bias, but potentially high variance, and conversely for A ..... 0. Figure 3a 
confirms this in a problem which is a little like a random walk, except that it is highly 
cyclic so that it returns to each state many times in a single trial. If the initial bias 
is high (low), then the initial greedy value of A is high (low). We had expected the 
asymptotic greedy value of A to be 0, since once b(t) ..... 0, then A = ° leads to lower 
variance updates. However, Figure 3a shows a non-zero asymptote - presumably 
because larger learning rates can be used for A > 0, because of covariance. Figure 3b 
shows, however, that there is little advantage in choosing A cleverly except in the 
first few trials, at least if good values of a are available. 

Eigenvalue stability analysis: We analysed the eigenvalues of the covariance 
update matrix BS (c.f. Equation 2) to determine maximal fixed a as a function 
of A. Note that larger a tends to lead to faster learning, provided that the values 
converge. Figure 4a shows the largest eigenvalue of B S as a function of A for various 
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Figure 3: Greedy A for a highly cyclic problem. a) Greedy A for high and low initial bias 
(using greedy a) . b) Ratio of MSE for given value of A to that for greedy A at each trial. 
The greedy A is used for every step. 
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Figure 4: Eigenvalue analysis of covariance reduction. a) Maximal modulus of the eigen­
values of B S • These determine the rate of convergence of the variance. Values greater than 
1 lead to instability. b) Largest a such that the covariance is bounded. The inset shows a 
blowup for 0.9 ;:; A ;:; 1. Note that A = 1 is not optimal. c) Maximal bias reduction rates 
as a function of A, after controlling for asymptotic variance (to 0.1 and 0.01) by choosing 
appropriate a's. Again, A < 1 is optimal. 

a. If this eigenvalue is larger than 1, then the algorithm will diverge - a behavior 
that we observed in our simulations. The effect of hypothesis H3 above is evident -
for larger A, only smaller a can be used. Figure 4b shows this in more graphic form, 
indicating the largest a that leads to stable eigenvalues for B S . Note the reversal 
very dose to A = 1, which provides more evidence against the pure MC algorithm. 
The choice of a and A control both rate of convergence and the asymptotic MSE. 
In Figure 4c we control for the asymptotic variance by choosing appropriate as as 
a function of .x and plot maximal eigenvalues of 8 m (c.f. Equation 1; it controls 
the terminal rate of convergence of the bias to zero) as a function of A. Again , we 
see evidence for T Dover Me. 

4 CONCLUSIONS 

We have provided analytical expressions for calculating how the bias and variance 
of various TD and Monte Carlo algorithms change over iterations. The expressions 
themselves seem not to be very revealing, but we have provided many illustrations 
of their behavior in some example Markov chains. We have also used the analysis 
to calculate one-step optimal values of the step-size a and eligibility trace A param­
eters . Further, we have calculated terminal mean square errors and maximal bias 
reduction rates. Since all these results depend on the precise Markov chains chosen, 
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it is hard to make generalisations. 

We have posited four general conjectures: HI) for constant A, the larger a, the 
larger the terminal MSE; H2) the larger a or A (except for A very close to I), the 
faster the convergence to the asymptotic MSE, provided that this is finite; H3) the 
smaller A, the smaller the range of a for which the terminal MSE is not excessive; 
H4) higher values of A are good for cases with high initial biases. The third of 
these is somewhat surprising, because the effective value of the step-size is really 
al(l - A). However, the lower A, the more the value of a state is based on the 
value estimates for nearby states. We conjecture that with small A, large a can 
quickly lead to high correlation in the value estimates of nearby states and result 
in runaway variance updates. 

Two main lines of evidence suggest that using values of A other than 1 (Le., using a 
temporal difference rather than a Monte-Carlo algorithm) can be beneficial. First, 
the greedy value of A chosen to minimise the MSE at the end of the step (whilst 
using the associated greedy a) remains away from 1 (see Figure 3). Second, the 
eigenvalue analysis of BS showed that the largest value of a that can be used is 
higher for A < 1 (also the asymptotic speed with which the bias can be guaranteed 
to decrease fastest is higher for A < 1). 

Although in this paper we have only discussed results for the standard TD(A) al­
gorithm (called Accumulate), we have also analysed Replace TD(A) of Singh & 
Sutton (1996) and various others. This analysis clearly provides only an early step 
to understanding the course of learning for TD algorithms, and has focused exclu­
sively on prediction rather than control. The analytical expressions for MSE might 
lend themselves to general conclusions over whole classes of Markov chains, and our 
graphs also point to interesting unexplained phenomena, such as the apparent long 
tails in Figure 1c and the convergence of greedy values of A in Figure 3. Stronger 
analyses such as those providing large deviation rates would be desirable. 
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