
Text-Based Information Retrieval Using
Exponentiated Gradient Descent

Ron Papka, James P. Callan, and Andrew G. Barto *
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

papka@cs.umass.edu, callan@cs.umass.edu, barto@cs.umass.edu

Abstract

The following investigates the use of single-neuron learning algo­
rithms to improve the performance of text-retrieval systems that
accept natural-language queries. A retrieval process is explained
that transforms the natural-language query into the query syntax
of a real retrieval system: the initial query is expanded using statis­
tical and learning techniques and is then used for document ranking
and binary classification. The results of experiments suggest that
Kivinen and Warmuth's Exponentiated Gradient Descent learning
algorithm works significantly better than previous approaches.

1 Introduction
The following work explores two learning algorithms - Least Mean Squared (LMS)
[1] and Exponentiated Gradient Descent (EG) [2] - in the context of text-based
Information Retrieval (IR) systems. The experiments presented in [3] use connec­
tionist learning models to improve the retrieval of relevant documents from a large
collection of text. Here, we present further analysis of those experiments. Previous
work in the area employs various techniques for improving retrieval [6, 7, 14]. The
experiments presented here show that EG works significantly better than widely
used ad hoc methods for finding a good set of query term weights.

The retrieval processes being considered operate on a collection of documents, a
natural-language query, and a training set of documents judged relevant or non­
relevant to the query. The query may be, for example, the information request
submitted through a web-search engine, or through the interface of a system with

This material is based on work supported by the National Science Foundation, Library
of Congress, and Department of Commerce under cooperative agreement number EEC-
9209623. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect those of the sponsor.

4 R. Papka, J. P. Callan and A. G. Barto

domain-specific information such as legal, governmental, or news data maintained
as a collection of text. The query, expressed as complete or incomplete sentences, is
modified through a learning process that incorporates the terms in the test collection
that are important for improving retrieval performance. The resulting query can
then be used against collections similar in domain to the training collection.

Natural language query:
An insider-trading case.

IR system query using default weights:
#WSUM(1.0 An 1.0 insider 1.0 trading 1.0 case);

After stop word and stemming process:
#WSUM(1.0 insid 1.0 trade 1.0 case)j

After Expansion and learning new weights:
#WSUM(0.181284 insid 0.045721 trade 0.016127 case 0.088143 boesk
0.000001 ivan 0.026762 sec 0.052081 guilt 0 .074493 drexel 0.000001 plead
0.003834 fraud 0.091436 takeov 0.018636 lavyer 0.000000 crimin 0.137799
alleg 0.057393 attorney 0.155781 charg 0.024237 scandal 0.000000 burnham
0.000000 lambert 0.026270 investig 0.000000 vall 0.000000 firm 0.000000
illeg 0.000000 indict 0.000000 prosecutor 0.000000 profit 0.000000);

Figure 1: Query Transformation Process.

The query transformation process is illustrated in Figure 1. First, the natural­
language query is transformed into one which can be used by the query-parsing
mechanism of the IR system. The weights associated with each term are assigned a
default value of 1.0, implying that each term is equally important in discriminating
relevant documents. The query then undergoes a stopping and stemming process,
by which morphological stemming and the elimination of very common words, called
stopwords, increases both the effectiveness and efficiency of a system [9]. The query
is subsequently expanded using a statistical term-expansion process producing terms
from the training set of documents. Finally, a learning algorithm is invoked to
produce new weights for the expanded query.

2 Retrieval Process
Text-based information retrieval systems allow the user to pose a query to a col­
lection or a stream of documents. When a query q is presented to a collection
c, each document dEc is examined and assigned a value relative to how well d
satisfies the semantics of the request posed by q. For any instance of the triple
< q, d,c >, the system determines an evaluation value attributed to d using the
function eval(q, d, c) .

The evaluation function eval(q, d, c) = L:t~:i;idi

was used for this work, and is based on an implementation of INQUERY [8]. It is
assumed that q and d are vectors of real numbers, and that c contains precomputed
collection statistics in addition to the current set of documents. Since the collection
may change over time, it may be necessary to change the query representation over
time; however, in what follows the training collection is assumed to be static, and
successful learning implies that the resulting query generalizes to similar collections.

An IR system can perform several kinds of retrieval tasks. This work is specif­
ically concerned with two retrieval processes: document ranking and document
classification. A ranking of documents based on query q is achieved by sorting all
documents in a collection by eval1,1ation value. Binary classification is achieved by
determining a threshold () such that for class R, eval (q, d, c) ~ () -+ d E R, and

Text-Based Information Retrieval Using Exponentiated Gradient Descent 5

eval (q, d, c) < () --+ d E R, so that R is the set of documents from the collection that
are classified as relevant to the query, and R is the set classified as non-relevant.

Central to any IR system is a parsing process used for documents and queries,
which produces tokens called terms. The terms derived from a document are used
to build an inverted list structure which serves as an index to the collection.
The natural-language query is also parsed into a set of terms. Research-based IR
systems such as INQUERY, OKAPI [111, and SMART [5], assume that the co­
occurrence of a term in a query and a document indicates that the document is
relevant to the query to some degree, and that a query with multiple terms requires
a mechanism by which to combine the evidence each co-occurrence contributes to
the document's degree of relevance to the query. The document representation for
such systems is a vector, each element of which is associated with a unique term in
the document. The values in the vector are produced by a term-evaluation function
comprised of a t.erm frequency component, tf, and an inverse document frequency
component, idj, which are described in [8, 11]. The tf component causes the term­
evaluation value to increase as a query-term's occurrence in the document increases,
and the idj component causes the term-evaluation value to decrease as the number
of documents in the collection in which the term occurs increases.

3 Query Expansion
Though it is possible to learn weights for terms in the original query, better re­
sults are obtained by first expanding the query with additional terms that can
contribute to identifying relevant documents, and then learning the weights for
the expanded query. The optimal number of terms by which to expand a query is
domain-dependent, and query expansion can be performed using several techniques,
including thesaurus expansion and statistical methods [12]. The query expansion
process performed in this work is a two-step process: term selection followed by
weight assignment. The term selection process ranks all terms found in relevant
documents by an information metric described in [8]. The top n terms are used in
the expanded query. The experiments in this work used values of 50 and 1000 for n.
The most common technique for weight assi~ment is derived from a closed-form
function originally presented by Rocchio in l6], but our experiments show that a
single-neuron learning approach is more effective.

3.1 Rocchio Weights
We assume that the terms of the original query are stored in a vector t, and that
their associated weights are stored in q. Assuming that the new terms in the
expanded query are stored t', the weights for q' can be determined using a method
originally developed by Rocchio that has been improved upon in [7, 8]. Using the
notation presented above, the weight assignment can be represented in the linear
form: q' = Ci* j(t) + /hr(t', R q , c) +"I*nr(t', Rq , c), where j is a function operating
on the terms in the original query, r is a function operating on the term statistics
available from the training set of relevant documents (Rq), and nr is a function
operating on the statistics from the non-relevant documents (Rq). The values for
Ci, (3, and "I have been the focus of many IR experiments, and 1.0, 2.0, and 0.5, have
been found to work well with various implementations of the functions j, r, and nr
[7].
3.2 LMS and EG
In the experiments that follow, LMS and EG were used to learn query term weights.
Both algorithms were used in a training process attempting to learn the association
between the set of training instances t documents) and their corresponding binary
classifications (relevant or non-relevant). A set of weights tV is updated given an
input instance x and a target binary classification value y. The algorithms learn the
association between x and y perfectly if tV· x = y, otherwise the value (y - tV· x) is
the error or loss incurred. The task of the learning algorithm is to learn the values
of tV for more than one instance of X.

The update rule for LMS is tVt+l = tVt + Tt, where it = -21Jt(tVt' Xt - Yt)Xt, where
. 1 Th d I £ EG' -. uh -eFt,; h the step-SIze 1Jt = x .x . e up ate ru e or IS Wt+l,i = "N " ;: _, were

t t ~j=l Wt ,; e t"

6 R. Papka, J. P. Callan and A. G. Barto

r . - -2" (w . X - y)x . and" - 2 t ,t - 'It t t t t ,t, 'It - 3(maxi(Xt ,i)-mini(Xt,i»'

There are several fundamental differences between LMS and EG; the most salient
is that EG has a multiplicative exponential update rule, while LMS is additive.
A less obvious difference is the derivation of these two update rules. Kivinen and
Warmuth [2] show that both rules are approximately derivable from an optimiza­
tion task that minimizes the linear combination of a distance and a loss func­
tion: distance (Wt+1 ,Wt) + 1Jtloss(Yt, Wt . Xt). But the distance component for the
derivation leading to the LMS update rule uses the squared Euclidean distance
Ilwt+1 - wtll~, while the derivation leading to the EG update rule uses relative en-
tropy or l:~1 Wt+1,i In W~:,l:i . Entropy metrics had previously been used as the
loss component [4] .

One purpose of Kivinen and Warmuth's work was to describe loss bounds for these
algorithms; however, they also observed that EG suffers significantly less from ir­
relevant attributes than does LMS. This hypothesis was tested in the experiments
conducted for this work.

4 Experiments
Experiments were conducted on 100 natural-language queries . The queries were
manually transformed into INQUERY syntax, expanded using a statistical tech­
nique described in [8], and then given a weight assignment as a result of a learning
process, One set of experiments expanded each query by 50 terms and another
set of experiments expanded each query by 1000 terms. The purpose of the latter
was to test the ability of each algorithm to learn in the presence of many irrelevant
attributes.

4.1 Data
The queries used are the description fields of information requests developed for
Text Retrieval Conferences (TREC) [10] . The first set of queries was taken from
TREC topics 51-100 and the second set from topics 101-150, for a total of 100
queries. After stopping and stemming, the average number of terms remaining
before expansion was 8.34 terms.

Training and testing for all queries was conducted on subsets of the Tipster collec­
tion, which currently contains 3.4 gigabytes of text, including 206,201 documents
whose relevance to the TREC topics has been evaluated. The collection is parti­
tioned into 3 volumes. The judged documents from volumes 1 and 2 were used
for training, while the documents from volume 3 were used for testing. Volumes 1
and 2 contain 741,856 documents from the Associated Press(1988-9), Department
of Energy abstract, Federal Register(1988-9), Wall Street Journal(1987 -91), and
Ziff-Davis Computer-select articles. Volume 3 contains 336,310 documents from
Associated Press(1990), San Jose Mercury News(1991), and Ziff-Davis articles.

Only a subset of the data for the TREC-Tipster environment has been judged.
Binary judgments are assessed by humans for the top few thousand documents that
were retrieved for each query by participating systems from various commercial and
research institutions. Based on the judged documents available for volumes 1 and
2, on average 280 relevant documents and 1236 non-relevant documents were used
to train each query.

4.2 Training Parameters
Rocchio weights were assigned based on coefficients described in Section 3.1. LMS
and EG update rules were applied using 100,000 random presentations of training
instances. It was empirically determined that this number of presentations was
sufficient to allow both learning algorithms to produce better query weights than
the Rocchio assignment based on performance metrics calculated using the training
instances.

In reality, of course, the number of documents that will be relevant to a partic­
ular query is much smaller than the number of documents that are non-relevant.
This property gives rise to the question of what is an appropriate sampling bias

Text-Based Information Retrieval Using Exponentiated Gradient Descent 7

of training instances, considering that the ratio of relevant to non-relevant docu­
ments approaches 0 in the limit. In the following experiments, LMS benefitted from
uniform random sampling from the set of training instances, while EG benefitted
from a balanced sampling, that is uniform random sampling from relevant training
instances on even iterations and from non-relevant instances on odd iterations.

A pocketing technique was applied to the learning algorithms [131. The purpose
of this technique is to find a set of weights that optimize a specilic user's utility
function. In the following experiments, weights were tested every 1000 iterations
using a recall and precision performance metric. If a set of weights produced a new
performance-metric maximum, it was saved. The last set saved was assumed to be
the result of the algorithm, and was used for testing.

A binary classification value pair (A, B) is supplied as the target for training, where
A is the classification value for relevant documents, and B is the classification
value for non-relevant documents. Using the standard classification value pair (1,
0), INQUERY's document representation inhibits learning due to the large error
caused by these unattainable values. Therefore, testing was done and resulted in
the observation that .4 was the lowest attainable evaluation value for a document,
and .47 appeared to be a good classification value for relevant documents. The
classification value pair used for both the LMS and EG algorithms was thus (.47,
.40).

4.3 Evaluation
In the experiments that follow, R-Precision (RP) was used to evaluate ranking per­
formance, and a new metric, Lower Bound Accuracy (LBA) was used to evaluate
classification. Both metrics make use of recall and precision, which are defined as
follows: Assume there exists a set of documents sorted by evaluation value and a
process that has performed classification, and that a = number of relevant doc­
uments classified as relevant, b = number of non-relevant documents classified as
relevant, c = number of relevant documents classified as non-relevant, and d =
number of non-relevant documents classified as non-relevant; then, Recall = a~c'

and Precision = a~b [3].

Precision and recall can be calculated at any cut-off point in the sorted list of
documents. R-Precision is calculated using the top n documents, where n is the
number of relevant training documents available for a query.

Lower Bound Accuracy (LBA) is a metric that assumes the minimum of a classifier's
accuracy with respect to relevant documents and its accuracy with respect to non-
relevant documents. It is defined as LBA = min(a~c' btd)' An LBA value can be
interpreted as the lower bound of the percent of instances a classifier will correctly
classify, regardless of an imbalance between the actual number of relevant and non­
relevant documents. This metric requires a threshold e. The threshold is taken
to be the evaluation value of the document at a cut-off point in the sorted list of
training documents where LBA is maximized. Hence, e = maXi (LBA(di , Rq, Rq»,
where di is the ith document in the sorted list.

4.4 Results

Query type RP LBA

NL 22.0 88.6
EXP 28.7 92.0
ROC 33.4 94.0
LMS 32.5 89.8
EG 40.3 95.1

Table 1: Query expansion by 50 terms

8 R. Papka, J. P. Callan and A. G. Barto

The following results show the ability of a query weight assignment to generalize.
The weights are derived from a subset of the training collection, and the values
reported are based on performance on the test collection. The results of the 50-
term-expansion experiments are listed in Table 1 1. They indicate that the expanded
query has an advantage over the original query, and that the EG-trained query gen­
eralized better than the other algorithms, while Rocchio appears to be the next
best. In terms of ranking, EG gives rise to a 20% improvement over the Rocchio as­
signment, and realizes 1.2% improvement in terms of classification. This apparently
slight improvement in classification in fact implies that EG is correctly classifying
at least 3000 documents more than the other approaches.

Table 2 shows a cross-algorithm analysis in which any two algorithms can be com­
pared. The analysis is calculated using both RP and LBA over all queries. An
entry for row i column j indicates the number of queries for which the performance
of algorithm i was better than algorithm j. Based on sign tests with 0: = .01, the
results confirm that EG significantly generalized better than the other algorithms.2

Query counts: RP-LBA
Query type NL EXP ROC LMS EG

NL - 30 -37 18 - 13 24 - 53 12 - 13
EXP 60 - 62 - 9 - 17 35 - 66 11 - 19
ROC 71- 86 72 -79 - 53 - 73 17 - 37
LMS 66 - 46 54 -34 38 - 26 - 13 - 15
EG 79 - 85 80 -80 70 - 62 74 - 84 -

Table 2: Cross Algorithm Analysis over 100 queries expanded by 50 terms.

As explained in Section 4.3, the thresholds used to calculate the LBA performance
metric are determined by obtaining an evaluation value in the training data corre­
sponding to the cut-off point where LBA was maximized. The threshold analysis
in Table 3 shows the best attainable classification performance against performance
actually achieved. The results indicate that there is still room for improvement;
however, they also indicate that this methodology is acceptable.

The results for queries expanded by 1000 terms are listed in Table 4. Since the
average document length in the Tipster collection is 806 terms (non-unique), at
least 20% of the terms in the expanded query are generally irrelevant to a particular
document. The results indicate that irrelevant attributes prevent all but EG from
generalizing well. Comparing the performance of EG and LMS adds evidence to
the Kivinen-Warmuth hypothesis that EG yields a smaller loss than LMS, given
many irrelevant attributes. Juxtaposing the results of the 50-term and 1000-term­
expansion experiments suggests that using a statistical filter for selecting the top few
terms is better than expanding the query by many terms and having the learning
algorithm perform term selection.

5 Conclusion
The experiment results presented here provide evidence that single-neuron learning
algorithms can be used to improve retrieval performance in IR systems. Based on
performance metrics that test the quality of a classification process and a docu­
ment ranking process, the weights produced by EG were consistently better than
previously available methods.

lR-Precision (RP) and Lower Bound Accuracy (LBA) performance values are normal­
ized to a 0-100 scale. Values are reported for: NL = original natural language query; EXP
= expanded query with weights set to 1.0; ROC = expanded query with weights based on
Rocchio assignment; LMS = expanded query with weights based on LMS learning; and
EG= expanded query with weights based on EG learning.

2Recent experiments using the optimization algorithm DFO (presented in [7]) suggest
that certain parameter settings make it competitive with EG.

Text-Based Information Retrieval Using Exponentiated Gradient Descent 9

I Query type I Potential LBA I Actual LBA I
NL 91.9 88.6
EXP 95.5 92.0
ROC 96.7 94.0
LMS 92.6 89.8
EG 97.1 95.1

Table 3: Threshold Analysis: Query expansion by 50 terms.

I Query type I RP I LBA I
NL 22.0 88.6
EXP 14.4 76.5
ROC 19.7 82.5
LMS 20.4 86.7
EG 35.0 93.2

Table 4: Query expansion by 1000 terms.

References
[1] B. Widrow and M. Hoff, "Adaptive switching circuits", In 1960 IRE WESCON

Convention Record, pp. 96-104, New York, 1960.

[2] J. Kivinen, Manfred Wartmuth, "Exponentiated Gradient Versus Gradient
Descent for Linear Predictors", UCSC Tech report: UCSC-CRL-94-16, June
21, 1994.

[3] D. Lewis, R. Schapire, J. Callan, and R. Papka, "Thaining Algorithms for
Linear Text Classifiers", Proceeding of SIGIR 1996.

[4] B.S. Wittner and J.S. Denker, "Strategies for Teaching Layered Networks
Classification Tasks", NIPS proceedings, 1987.

[5] G. Salton, "Relevance Feedback and optimization of retrieval effectiveness. In
The Smart system - experiments in automatic document processing" , 324-336.
Englewood Cliffs, NJ: Prentice Hall Inc., 1971.

[6] J.J. Rocchio, "Relevance Feedback in Information Retrieval in The Smart Sys­
tem - Experiments in Automatic document processing", 313-323. Englewood
Cliffs, NJ: Prentice Hall Inc., 1971.

[7] C. Buckley and G. Salton, "Optimization of Relevance Feedback Weights",
Proceeding of SIGIR 95 Seattle WA, 1995.

[8] J. Allan, L. Ballesteros, J. Callan, W.B. Croft, and Z. Lu, "Recent Experi­
ments with Inquery", TREC-4 Proceedings, 1995.

[9] M. Porter, "An Algorithm for Suffix Stripping", Program, Vol 14(3), pp. 130-
137,1980.

[10] D. Harman, Proceedings of Text REtrievl Conferences (TREC), 1993-5.

[11] S.E. Robertson, W. Walker, S. Jones, M.M. Hancock-Beaulieu, and
M.Gatford, "Okapi at TREC-3" , TREC-3 Proceedings, 1994.

[12] G. Salton, Automatic Text Processing, Addison-Wesley Publishing Co, Mas­
sachusetts, 1989.

[13] S.I. Gallant, "Optimal Linear Discrimants", Proceedings ofInternational Con­
ference on Pattern Recognition, 1986.

[14] B.T. Bartell, "Optimizing Ranking Functions: A Connectionist Approach to
Adaptive Information Retrieval" , Ph.D. Theis, UCSD 1994.

