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Abstract 

Two dimensional image motion detection neural networks have been 
implemented using a general purpose analog neural computer. The 
neural circuits perform spatiotemporal feature extraction based on the 
cortical motion detection model of Adelson and Bergen. The neural 
computer provides the neurons, synapses and synaptic time-constants 
required to realize the model in VLSI hardware. Results show that 
visual motion estimation can be implemented with simple sum-and­
threshold neural hardware with temporal computational capabilities. 
The neural circuits compute general 20 visual motion in real-time. 

1 INTRODUCTION 
Visual motion estimation is an area where spatiotemporal computation is of fundamental 
importance. Each distinct motion vector traces a unique locus in the space-time domain. 
Hence, the problem of visual motion estimation reduces to a feature extraction task, with 
each feature extractor tuned to a particular motion vector. Since neural networks are 
particularly efficient feature extractors, they can be used to implement these visual motion 
estimators. Such neural circuits have been recorded in area MT of macaque monkeys, 
where cells are sensitive and selective to 20 velocity (Maunsell and Van Essen, 1983). 

In this paper, a hardware implementation of 20 visual motion estimation with 
spatiotemporal feature extractors is presented. A silicon retina with parallel, continuous 
time edge detection capabilities is the front-end of the system. Motion detection neural 
networks are implemented on a general purpose analog neural computer which is 
composed of programmable analog neurons, synapses, axon/dendrites and synaptic time-
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constants (Van der Spiegel et al., 1994). The additional computational freedom introduced 
by the synaptic time-constants, which are unique to this neural computer, is required to 
realize the spatiotemporal motion estimators. The motion detection neural circuits are 
based on the early ID model of Adelson and Bergen and recent 2D models of David Heeger 
(Adelson and Bergen, 1985; Heeger et at., 1996). However, since the neurons only 
computed delayed weighted sum-and-threshold functions, the models must be modified. 
The original models require division for intensity normalization and a quadratic non­
linearity to extract spatiotemporal energy. In our model, normalization is performed by 
the silicon retina with a large contrast sensitivity (all edges are normalized to the same 
output), and rectification replaces the quadratic non-linearity. Despite these modifications, 
we show that the model works correctly. The visual motion vector is implicitly coded as 
a distribution of neural activity. 

Due to its computational complexity, this method of image motion estimation has not 
been attempted in discrete or VLSI hardware. The general purpose analog neural computer 
offers a unique avenue for implementing and investigating this method of visual motion 
estimation. The analysis, implementation and performance of spatiotemporal visual 
motion estimators are discussed. 

2 SPATIOTEMPORAL FEATURE EXTRACTION 

The technique of estimating motion with spatiotemporal feature extraction was proposed 
by Adelson and Bergen in 1985 (Adelson and Bergen, 1985). It emerged out of the 
observation that a point moving with constant velocity traces a line in the space-time 
domain, shown in figure la. The slope of the line is proportional to the velocity of the 
point. Hence, the velocity is represented as the orientation of the line. Spatiotemporal 
orientation detection units, similar to those proposed by Hubel and Wiesel for spatial 
orientation detection, can be used for detecting motion (Hubel and Wiesel, 1962). In the 
frequency domain, the motion of the point is also a line where the slope of the line is the 
velocity of the point. Hence orientation detection filters, shown as circles in figure lb, 
can be used to measure the motion of the point relative to their tuned velocity. A 
population of these tuned filters, figure ic, can be used to measure general image motion. 
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Figure 1: (a) ID Motion as Orientation in the Space-Time Domain. 
(b) and (c) Motion detection with Oriented Spatiotemporal Filters. 

If the point exhibits 2D motion, the problem is substantially more complicated, as 
observed by David Heeger (1987). A point executing 2D motion spans a plane in the 
frequency domain. The spatiotemporal orientation filter tuned to this motion must also 
span a plane (Heeger et ai., 1987, 1996). Figure 2a shows a filter tuned to 2D motion. 
Unfortunately, this torus shaped filter is difficult to realize without special mathematical 
tools. Furthermore, to create a general set of filters for measuring general 2D motion, the 
filters must cover all the spatiotemporal frequencies and all the possible velocities of the 
stimuli. The latter requirement is particularly difficult to obtain since there are two 
degrees of freedom (vX' v.y) to cover. 
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Figure 2: (a) 20 Motion Detection with 20 Oriented Spatiotemporal 
Filters. (b) General 20 Motion Detection with 2 Sets of 10 Filters. 
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To circumvent these problems, our model decomposes the image into two orthogonal 
images, where the perpendicular spatial variation within the receptive field of the filters 
are eliminated using spatial smoothing. Subsequently, ID spatiotemporal motion 
detection is used on each image to measure the velocity of the stimuli. This technique 
places the motion detection filters, shown as the circles in figure 2b, only in the rox-ro t 
and roy-rot planes to extract 20 motion, thereby drastically reducing the complexity of the 
20 motion detection model from O(n2) to O(2n). 

2.1 CONSTRUCTING THE SPATIOTEMPORAL MOTION FILTERS 

The filter tuned to a velocity vox (vOy) is centered at ro"x (rooy) and root where vox = roo/roox 
(voy = roo/roOy)' To create the filters, quadrature pairs (i.e. odd and even pairs) of spatial 
and temporal band-pass filters centered at the appropriate spatiotemporal frequencies are 
summed and differenced (Adelson and Bergen, 1985). The 1tI2 phase relationship between 
the filters allows them to be combined such that they cancel in opposite quadrants, 
leaving the desired oriented filter, as shown in figure 3a. Equation 1 shows examples of 
quadrature pairs of spatial and temporal filters implemented. The coefficients of the filters 
balance the area under their positive and negative lobes. The spatial filters in equation 1 
have a 5 x 5 receptive field, where the sampling interval is determined by the silicon 
retina. Figure 3b shows a contour plot of an oriented filter (a=11 rads/s, 02=201=4Da). 

S(even) = [0.5 - 0.32Cos(wx )- 0.18Cos(2wx )] (a) 

S(odd) = [-{).66jSin(wx ) - 0.32jSin(2wx )] (b) 

-w26 
T(even) = t 2 . a« 6 "" 6 

(jwt + a)(jwt + 61 )(jwt + 62 ) , 1 2 

. 66 
T(odd) = JWt 1 2 . a« 6 "" 6 
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Left Motion = S(e)T(e) - S(o)T(o) or S(e)T(o) - S(o)T(e) 

Right Motion = S(e)T(e)+S(o)T(o) or S(e)T(o)+S(o)T(e) 

(c) 

(d) 

(e) 

(f) 

(I) 

To cover a wide range of velocity and stimuli, multiple filters are constructed with 
various velocity, spatial and temporal frequency selectivity. Nine filters are chosen per 
dimension to mosaic the rox-rot and roy-rot planes as in figure 2b. The velocity of a 
stimulus is given by the weighted average of the tuned velocity of the filters, where the 
weights are the magnitudes of each filter's response. All computations for 20 motion 
detection based on cortical models have been realized in hardware using a large scale 
general purpose analog neural computer. 
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Figure 3: (a) Constructing Oriented Spatiotemporal Filters. (b) 
Contour Plot of One of the Filters Implemented. 

3 HARDWARE IMPLEMENTATION 
3.1 GENERAL PURPOSE ANALOG NEURAL COMPUTER 

The computer is intended for fast prototyping of neural network based applications. It 
offers the flexibility of programming combined with the real-time performance of a 
hardware system (Mueller, 1995). It is modeled after the biological nervous system, i.e. 
the cerebral cortex, and consists of electronic analogs of neurons, synapses, synaptic time 
constants and axon/dendrites. The hardware modules capture the functional and 
computational aspects of the biological counterparts. The main features of the system are: 
configurable interconnection architecture, programmable neural elements, modular and 
expandable architecture, and spatiotemporal processing. These features make the network 
ideal to implement a wide range of network architectures and applications. 

The system, shown in part in figure 4, is constructed from three types of modules (chips): 
(1) neurons, (2) synapses and (3) synaptic time constants and axon/dendrites. The neurons 
have a piece-wise linear transfer function with programmable (8bit) threshold and 
minimum output at threshold. The synapses are implemented as a programmable 
resistance whose values are variable (8 bit) over a logaritnmic range between 5KOhm and 
lOMohm. The time constant, realized with a load-compensated transconductance 
amplifier, is selectable between O.5ms and Is with a 5 bit resolution. The axon/dendrites 
are implemented with an analog cross-point switch matrix. The neural computer has a 
total of 1024 neurons, distributed over 64 neuron modules, with 96 synaptic inputs per 
neuron, a total of 98,304 synapses, 6,656 time constants and 196,608 cross point 
switches. Up to 3,072 parallel buffered analog inputs/outputs and a neuron output analog 
mulitplexer are available. A graphical interface software, which runs on the host 
computer, allows the user to symbolically and physically configure the network and 
display its behavior (Donham, 1994). Once a particular network has been loaded, the 
neural network runs independently of the digital host and operates in a fully analog, 
parallel and continuous time fashion. 

3.2 NEURAL IMPLEMENTATION OF SPATIOTEMPORAL FILTERS 

The output of the silicon retina, which transforms a gray scale image into a binary image 
of edges, is presented to the neural computer to implement the oriented spatiotemporal 
filters. The first and second derivatives of Gaussian functions are chosen to implement 
the odd and even spatial filters, respectively. They are realized by feeding the outputs of 
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Figure 4: Block Diagram of the Overall Neural Network Architecture. 
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the retina, with appropriate weights, into a layer of neurons. Three parallel channels 
with varying spatial scales are implemented for each dimension. The output of the even 
(odd) spatial filter is subsequently fed to three parallel even (odd) temporal filters, which 
also have varying temporal tuning. Hence, three non-oriented pairs of spatiotemporal 
filters are realized for each channel. Six oriented filters are realized by summing arx.l 
differencing the non-oriented pairs. The oriented filters are rectified, and lateral inhibition 
is used to accentuate the higher response. Figure 4 shows a schematic of the neural 
circuitry used to implement the orientation selective filters. 

The image layer of the network in figure 5 is the direct, parallel output of the silicon 
retina. A 7 x 7 pixel array from the retina is decomposed into 2, 1 x 7 orthogonal linear 
images, and the nine motion detection filters are implemented per image. The total 
number of neurons used to implement this network is 152, the number of synapse is 548 
and the number of time-constants is 108. The time-constant values ranges from 0.75 ms 
to 375 ms. After the networks have been programmed into the VLSI chips of the neural 
computer, the system operates in full parallel and continuous time analog mode. 
Consequently, this system realizes a silicon model for biological visual image motion 
measurement, starting from the retina to the visual cortex. 

Odd Spatial Filter S(o)"' dG(x)ldx"' 2xExp(-x2) Even Spatial Filter S(e)"' ()2G(x)ldx2 = C4x2_2)Exp(-x2) 

!l\ It\. .ffit 
\i'V ~u- ~ 

ooW 0 ° 0?1b210 

Velocity Selective Spatiotemporal Filters 

Figure 5: Neural Network Implementation of the Oriented 
Spatiotemporal Filters. 
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4 RESULTS 
The response of the spatiotemporal filters implemented with the neural computer are 
shown in figure 6. The figure is obtained by sampling the output of the neurons at 
IMHz using the on-chip analog multiplexers. In figure 6a, the impulse response of the 
spatial filters are shown as a point moves across their receptive field. Figure 6b shows 
the outputs of the even and odd temporal filters for the moving point. At the output of 
the filters, the even and odd signals from the spatial filters are no longer out of phase. 
This transformation yields to constructive or destructive interference when they are 
summed and differenced. When the point move in opposite direction, the odd filters 
changes such that the output of the temporal filters become 1800 out of phase. 
Subsequent summing and differencing will have the opposite result. Figure 6c shows the 
output for all nine x-velocity selective filters as a point moves with positive velocity . 
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Figure 6: Output of the Neural Circuits for a Moving Point: (a) 
Spatial Filters, (b) Temporal Filters and (c) Motion Filters. 

Figure 7 shows the tuning curves for the filters tuned to x-motion. The variations in the 
responses are due to variations in the analog components of the neural computer. Some 
aliasing is noticeable in the tuning curves when there is a minor peak in the opposite 
direction. This results from the discrete properties of the spatial filters, as seen in 
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Figure 7: Tuning Curves for the Nine X-Motion Filters. 
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figure 3b. Due to the lateral inhibition employed, the aliasing effects are minimal. 
Similar curves are obtained for the y-motion tuned filters. 

For a point moving with v. = 8.66 mmls and Vy = 5 mmls, the output of the motion 
filters are shown in Table I. Computing a weighted average using equation 2, yields v.m 
= 8.4 mmls and v ym = 5.14 mmls. This result agrees with the actual motion of the point. 

v = ~ vtunedo./~ 0 mkJllL.J1 
i i 

(2) 

Table 1: Filter Responses for a Point Moving at 10 mmls at 30°. 

X Filters [Speed in mmls] Y Filters [Speed in mm/s] 
Ifuned Speed 25 9 4 22 7 3.5 14 . 3.5 3 26 9.5 5 20 7.8 3.7 15 4. 1 

l!iesQonse 0.52 0 .95 0.57 0.53 0.9 0.3 0 .7 0 .9 0.31 0.35 0.67 0.92 0 .3 0.85 0 .9 0 .54 0 .9 

truned ~peed -27 -7 .7 -5 -18 -6 -3.2 -13 -6 -2 .1 -25 -8 -4.1 -21 -7 -4 -14 -5 

3.5 

0.9 

-2 

Response 0 .0 0 .05 0.1 0. 1 0.05 0.05 0.0 0 .05 0.1 0 .1 O.O~ 0.1 0.3 0.05 0 .01 0 .23 0 .05 0 .1 

5 CONCLUSION 
2D image motion estimation based on spatiotemporal feature extraction has been 
implemented in VLSI hardware using a general purpose analog neural computer. The 
neural circuits capitalize on the temporal processing capabilities of the neural computer. 
The spatiotemporal feature extraction approach is based on the 1 D cortical motion 
detection model proposed by Adelson and Bergen, which was extended to 2D by Heeger et 
al. To reduce the complexity of the model and to allow realization with simple sum-and­
threshold neurons, we further modify the 2D model by placing filters only in the (O.-ro t 
and (Oy-(Ot planes, and by replacing quadratic non-linearities with a rectifiers. The 
modifications do not affect the performance of the model. While this technique of image 
motion detection requires too much hardware for focal plane implementation, our results 
show that it is realizable when a silicon "brain," with large numbers of neurons and 
synaptic time constant, is available. This is very reminiscent of the biological master. 
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