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Abstract 

In general, procedures for determining Bayes-optimal adaptive 
controls for Markov decision processes (MDP's) require a pro­
hibitive amount of computation-the optimal learning problem 
is intractable. This paper proposes an approximate approach in 
which bandit processes are used to model, in a certain "local" sense, 
a given MDP. Bandit processes constitute an important subclass of 
MDP's, and have optimal learning strategies (defined in terms of 
Gittins indices) that can be computed relatively efficiently. Thus, 
one scheme for achieving approximately-optimal learning for gen­
eral MDP's proceeds by taking actions suggested by strategies that 
are optimal with respect to local bandit models. 

1 INTRODUCTION 

Watkins [1989] has defined optimal learning as:" the process of collecting and 
using information during learning in an optimal manner, so that the learner makes 
the best possible decisions at all stages of learning: learning itself is regarded as a 
mUltistage decision process, and learning is optimal if the learner adopts a strategy 
that will yield the highest possible return from actions over the whole course of 
learning." 

For example, suppose a decision-maker is presented with two biased coins (the 
decision-maker does not know precisely how the coins are biased) and asked to al­
locate twenty flips between them so as to maximize the number of observed heads. 
Although the decision-maker is certainly interested in determining which coin has 
a higher probability of heads, his principle concern is with optimizing performance 
en route to this determination. An optimal learning strategy typically intersperses 
"exploitation" steps, in which the coin currently thought to have the highest proba-
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Figure 1: A simple example: dynamics/rewards under (a) action 1 and (b) action 
2. (c) The decision problem in hyperstate space. 

bility of heads is flipped, with "exploration" steps in which, on the basis of observed 
flips, a coin that would be deemed inferior is flipped anyway to further resolve its 
true potential for turning up heads. The coin-flip problem is a simple example of a 
(two-armed) bandit problem. A key feature of these problems, and of adaptive con­
trol processes in general, is the so-called "exploration-versus-exploitation trade-off" 
(or problem of "dual control" [Fel'dbaum, 1965]). 

As an another example, consider the MDP depicted in Figures l(a) and (b). This is 
a 2-state/2-action proceSSj transition probabilities label arcs, and quantities within 
circles denote expected rewards for taking particular actions in particular states. 
The goal is to assign actions to states so as to maximize, say, the expected infinite 
horizon discounted sum ofrewards (the value function) over all states. For the case 
considered in this paper, the transition probabilites are not known. Given that 
the process is in some state, one action may be optimal with respect to currently­
perceived point-estimates of unknown parameters, while another action may result 
in greater information gain. Optimal learning is concerned with striking a balance 
between these two criteria. 

While reinforcement learning approaches have recognized the dual-effects of con­
trol, at least in the sense that one must occasionally deviate from a greedy policy 
to ensure a search of sufficient breadth, many exploration procedures appear not 
to be motivated by real notions of optimallearningj rather, they aspire to be prac­
tical schemes for avoiding unrealistic levels of sampling and search that would be 
required if one were to strictly adhere to the theoretical sufficient conditions for 
convergence-that all state-action pairs must be considered infinitely many times. 

If one is willing to adopt a Bayesian perspective, then the exploration-versus­
exploitation issue has already been resolved, in principle. A solution was recognized 
by Bellman and Kalaba nearly fo rty years ago [Bellman & Kalaba, 1959]j their 
dynamic programming algorithm for computing Bayes-optimal policies begins by 
regarding "state" as an ordered pair, or "hyperstate," (:z:,I), where :z: is a point 
in phase-space (Markov-chain state) and I is the "information pattern," which 
summarizes past history as it relates to modeling the transitional dynamics of :z:. 
Computation grows increasingly burdensome with problem size, however, so one is 
compelled to seek approximate solutions, some of which ignore the effects of infor­
mation gain entirely. In contrast, the approach suggested in this paper explicitly 
acknowledges that there is an information-gain component to the optimal learn-
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ing problem; if certain salient aspects of the value of information can be captured, 
even approximately, then one may be led to a reasonable method for approximating 
optimal learning policies. 

Here is the basic idea behind the approach suggested in this paper: First note that 
there exists a special class of problems, namely multi-armed bandit problems, in 
which the information pattern is the sole component of the hyperstate. These special 
problems have the important feature that their optimal policies can be defined 
concisely in terms of "Gittins indices," and these indices can be computed in a 
relatively efficient way. This paper is an attempt to make use of the fact that this 
special subclass of MDP's has tractably-computable optimal learning strategies. 
Actions for general MDP's are derived by, first, attaching to a given general MDP 
in a given state a "local" n-armed bandit process that captures some aspect of the 
value of information gain as well as explicit reward. Indices for the local bandit 
model can be computed relatively efficiently; the largest index suggests the best 
action in an optimal-learning sense. The resulting algorithm has a receding-horizon 
flavor in that a new local-bandit process is constructed after each transition; it 
makes use of a mean-process model as in some previously-suggested approximation 
schemes, but here the value of information gain is explicitly taken into account, in 
part, through index calculations. 

2 THE BAYES-BELLMAN APPROACH FOR 
ADAPTIVE MDP'S 

Consider the two-state, two-action process shown in Figure 1, and suppose that 
one is uncertain about the transition probabilities. If the process is in a given 
state and an action is taken, then the result is that the process either stays in the 
state it is in or jumps to the other state-one observes a Bernoulli process with 
unknown parameter-just as in the coin-flip example. But in this case one observes 
four Bernoulli processes: the result of taking action 1 in state 1, action 1 in 
state 2, action 2 in state 1, action 2 in state 2. So if the prior probability 
for staying in the current state, for each of these state-action pairs, is represented by 
a beta distribution (the appropriate conjugate family of distributions with regard 
to Bernoulli sampling; I.e., a Bayesian update of a beta prior remains beta), then 
one may perform dynamic programming in a space of "hyperstates," in which the 
components are four pairs of parameters specifying the beta distributions describ­
ing the uncertainty in the transition probabilities, along with the Markov chain 
state: (:z:, (aL,Bt), (a~,,B~)(a~,,Bn, (a~,,B~»), where for example (aL,BD denotes 
the parmeters specifying the beta distribution that represents uncertainty in the 
transition probability P~l. Figure l(c) shows part ofthe associated decision tree; an 
optimality equation may be written in terms of the hyperstates. MDP's with more 
than two states pose no special problem (there exists an appropriate generalization 
of the beta distribution). What i& a problem is what Bellman calls the "problem 
of the expanding grid:" the number of hyperstates that must be examined grows 
exponentially with the horizon. 

How does one proceed if one is constrained to practical amounts of computation and 
is willing to settle for an approximate solution? One could truncate the decision 
tree at some shorter and more manageable horizon, compute approximate terminal 
values by replacing the distributions with their means, and proceed with a receding­
horizon approach: Starting from the approximate terminal values at the horizon, 
perform a backward sweep of dynamic programming, computing an optimal policy. 
Take the initial action of the policy, then shift the entire computational window 
forward one level and repeat. One can imagine a sort of limiting, degenerate version 
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of this receding horizon approach in which the horizon is zerOj that is, use the means 
of the current distributions to calculate an optimal policy, take an "optimal" action, 
observe a transition, perform a Bayesian modification of the prior, and repeat. 
This (certainty-equivalence) heuristic was suggested by [Cozzolino et al., 1965], and 
has recently reappeared in [Dayan & Sejnowski, 1996]. However, as was noted in 
[Cozzolino et al., 1965] " ... the trade-off between immmediate gain and information 
does not exist in this heuristic. There is no mechanism which explicitly forces 
unexplored policies to be observed in early stages. Therefore, if it should happen 
that there is some very good policy which a priori seemed quite bad, it is entirely 
possible that this heuristic will never provide the information needed to recognize 
the policy as being better than originally thought .. .'t This comment and others seem 
to refer to what is now regarded as a problem of "identifiability" associated with 
certainty-equivalence controllers in which a closed-loop system evolves identically for 
both true and false values of the unknown parametersj that is, certainty-equivalence 
control may make some of the unknown parameters invisible to the identification 
process and lead one to repeatedly choose the wrong action (see [Borkar & Varaiya, 
1979], and also Watkinst discussion of "metastable policiestt in [Watkins, 1989]). 

3 BANDIT PROBLEMS AND INDEX COMPUTATION 

One basic version of the bandit problem may be described as follows: There are 
some number of statistically independent reward processes-Markov chains with 
an imposed reward structure associated with the chain's arcs. At each discrete 
time-step, a decision-maker selects one of these processes to activate. The activated 
process yields an immediate reward and then changes state. The other processes 
remain frozen and yield no reward. The goal is to splice together the individual 
reward streams into one sequence having maximal expected discounted value. 

The special Cartesian structure of the bandit problem turns out to imply that there 
are functions that map process-states to scalars (or "indices't), such that optimal 
policies consist simply of activating the task with the largest index. Consider one of 
the reward processes, let S be its state space, and let B be the set of all subsets of 
S. Suppose that :z:(k) is the state of the process at time k and, for B E B, let reB) 
be the number of transitions until the process first enters the set B. Let v(ij B) be 
the expected discounted reward per unit of discounted time starting from state i 
until the stopping time reB): 

Then the Gittins index of state i for the process under consideration is 

v(i) = maxv(ijB). 
BEB 

(1) 

[Gittins & Jones, 1979] shows that the indices may be obtained by solving a set 
of functional equations. Other algorithms that have been suggested include those 
by Beale (see the discussion section following [Gittins & Jones, 1979]), [Robin­
sion, 1981], [Varaiya et al., 1985], and [Katehakis & Vein ott , 1987]. [Dufft 1995] 
provides a reinforcement learning approach that gradually learns indices through 
online/model-free interaction with bandit processes. The details of these algorithms 
would require more space than is available here. The algorithm proposed in the next 
section makes use of the approach of [Varaiya et al., 1985]. 
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APPROXIMATELY-OPTIMAL LEARNING 
ALGORITHM 
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The most obvious difference between the optimal learning problem for an MDP and 
the multi-armed bandit problem is that the MDP has a phase-space component 
(Markov chain state) to its hyperstate. A first step in bandit-based approximation, 
then, proceeds by "removing" this phase-space component. This can be achieved by 
viewing the process on a time-scale defined by the recurrence time of a given state. 
That is, suppose the process is in some state, z. In response to some given action, 
two things can happen: (1) The process can transition, in one time-step, into z 
again with some immediate reward, or (2) The process can transition into some 
state that is not z and experience some "sojourn" path of states and rewards before 
returning to z. On a time-scale defined by sojourn-time, one can view the process 
in a sort of "state-z-centric" way (if state z never recurs, then the sojourn-time is 
"infinite" and there is no value-of-information component of the local bandit model 
to acknowledge) . From this perspective, the process appears to have only one state, 
and is 8em~Markov; that is, the time between transitions is a random variable. 
Some other action taken in state z would give rise to a different sojourn reward 
process. For both processes (sojourn-processes initiated by different actions applied 
to state z), the sojourn path/reward will depend upon the policy for states encoun­
tered along sojourn paths, but suppose that this policy is fixed for the moment. 
By viewing the original process on a time-scale of sojourn-time, one has effectively 
collapsed the phase-space component of the hyperstate. The new process has one 
state, z, and the problem of choosing an action, given that one is uncertain about 
the transition probabilities, presents itself as a semi-Markov bandit problem. 

The preceding discussion suggests an algorithm for approximately-optimal learning: 

(0) Given that the uncertainty in transition probabilities is expressed in terms of 
sufficient statistics < a, Ii >, and the process is currently in state Zt. 

(1) Compute the optimal policy for the mean process, 7r·[F(a,Ii)]; that is, com­
pute the policy that is optimal for the MDP whose transition probabilities 
are taken to be the mean values associated with < a, Ii >-this defines a 
nominal (certainty-equivalent) policy for sojourn states. 

(2) Construct a local bandit model at state Zt; that is, the decision-maker must 
choose between some number (the number of admissible actions) of sojourn 
reward processes-this is a semi-Markov multi-armed bandit problem. 

(3) Compute the Gittins indices for the local bandit model. 

( 4) Take the action with the largest index. 

(5) Observe a transition to Zt+l in the underlying MDP. 

(6) Update < a,1i > accordingly (Bayes update). 

(7) Go to step (1) 

The local semi-Markov bandit process associated with state 1 / action 1 for 
the 2-state example MDP of Figure 1 is shown in Figure 2. The sufficient statistics 
for ptl are denoted by (Q, f3), and Q~.8 and ~ are the expected probabilities for 
transition into state 1 and state 2, respectively. rand R121 are random variables 
signifying sojourn time and reward. 

The goal is to compute the index for the root information-state labeled < Q, f3 > and 
to compare it with that computed for a similar diagram associated with the bandit 
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Figure 2: A local semi-Markov bandit process associated with state 1 / action 
1 for the 2-state example MDP of Figure 1. 

process for taking action 2. The approximately-optimal action is suggested by the 
process having the largest root-node index. Indices for semi-Markov bandits can be 
obtained by considering the bandits as Markov, but performing the optimization 
in Equation 1 over a restricted set of stopping times. The algorithm suggested 
in [Tsitsiklis, 1993], which in turn makes use of methods described in [Varaiya et 
al., 1985], proceeds by "reducing" the graph through a sequence of node-excisions 
and modifications of rewards and transition probabilities; [Duff, 1997] details how 
these steps may be realized for the special semi-Markov processes associated with 
problems of optimal learning. 

5 Discussion 

In summary, this paper has presented the problem of optimal learning, in which 
a decision-maker is obliged to enjoy or endure the consequences of its actions in 
quest of the asymptotically-learned optimal policy. A Bayesian formulation of the 
problem leads to a clear concept of a solution whose computation, however, appears 
to entail an examination of an intractably-large number of hyperstates. This pa­
per has suggested extending the Gittins index approach (which applies with great 
power and elegance to the special class of multi-armed bandit processes) to general 
adaptive MDP's. The hope has been that if certain salient features of the value 
of information could be captured, even approximately, then one could be led to a 
reasonable method for avoiding certain defects of certainty-equivalence approaches 
(problems with identifiability, "metastability"). Obviously, positive evidence, in the 
form of empirical results from simulation experiments, would lend support to these 
ideas- work along these lines is underway. 

Local bandit approximation is but one approximate computational approach for 
problems of optimal learning and dual control. Most prominent in the literature of 
control theory is the "wide-sense" approach of [Bar-Shalom & Tse, 1976], which uti­
lizes local quadratic approximations about nominal state/control trajectories. For 
certain problems, this method has demonstrated superior performance compared 
to a certainty-equivalence approach, but it is computationally very intensive and 
unwieldy, particularly for problems with controller dimension greater than one. 

One could revert to the view of the bandit problem, or general adaptive MDP, 
as simply a very large MDP defined over hyperstates, and then consider a some-
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what direct approach in which one performs approximate dynamic programming 
with function approximation over this domain-details of function-approximation, 
feature-selection, and "training" all become important design issues. [Duff, 1997] 
provides further discussion of these topics, as well as a consideration of action­
elimination procedures [MacQueen, 1966] that could result in substantial pruning 
of the hyperstate decision tree. 
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