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Abstract 

We consider the problem of prediction of stationary time series, 
using the architecture known as mixtures of experts (MEM). Here 
we suggest a mixture which blends several autoregressive models. 
This study focuses on some theoretical foundations of the predic­
tion problem in this context. More precisely, it is demonstrated 
that this model is a universal approximator, with respect to learn­
ing the unknown prediction function . This statement is strength­
ened as upper bounds on the mean squared error are established. 
Based on these results it is possible to compare the MEM to other 
families of models (e.g., neural networks and state dependent mod­
els). It is shown that a degenerate version of the MEM is in fact 
equivalent to a neural network, and the number of experts in the 
architecture plays a similar role to the number of hidden units in 
the latter model. 
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1 Introduction 

In this work we pursue a new family of models for time series, substantially extend­
ing, but strongly related to and based on the classic linear autoregressive moving 
average (ARMA) family. We wish to exploit the linear autoregressive technique in 
a manner that will enable a substantial increase in modeling power, in a framework 
which is non-linear and yet mathematically tractable. 

The novel model, whose main building blocks are linear AR models, deviates from 
linearity in the integration process, that is, the way these blocks are combined. This 
model was first formulated in the context of a regression problem, and an extension 
to a hierarchical structure was also given [2]. It was termed the mixture of experts 
model (MEM). 

Variants of this model have recently been used in prediction problems both in 
economics and engineering. Recently, some theoretical aspects of the MEM , in the 
context of non-linear regression, were studied by Zeevi et al. [8], and an equivalence 
to a class of neural network models has been noted. 

The purpose of this paper is to extend the previous work regarding the MEM 
in the context of regression, to the problem of prediction of time series. We shall 
demonstrate that the MEM is a universal approximator, and establish upper bounds 
on the approximation error, as well as the mean squared error, in the setting of 
estimation of the predictor function. 

It is shown that the MEM is intimately related to several existing, state of the art, 
statistical non-linear models encompassing Tong's TAR (threshold autoregressive) 
model [7], and a certain version of Priestley's [6] state dependent models (SDM). 
In addition, it is demonstrated that the MEM is equivalent (in a sense that will be 
made precise) to the class of feedforward, sigmoidal, neural networks. 

2 Model Description 

The MEM [2] is an architecture composed of n expert networks, each being an AR( d) 
linear model. The experts are combined via a gating network, which partitions the 
input space accordingly. Considering a scalar time series {xt}, we associate with 
each expert a probabilistic model (density function) relating input vectors x!=~ == 
[Xt-l,Xt-2, ... ,Xt-d] to an output scalar Xt E]R and denote these probabilistic 
models by p(xtl x!=~;Oj,O"j) j = 1,2, ... ,n where (OJ,O"j) is the expert parameter 
vector, taking values in a compact subset of ]Rd+l. In what follows we will use 
upper case X t to denote random variables, and lower case Xt to denote values taken 
by those r.v.'s. 

Letting the parameters of each expert network be denoted by ( OJ, 0" j ), j = 
1,2, ... , n, those of the gating network by Og and letting 8 = ({OJ, O"j }j=l, Og) 
represent the complete set of parameters specifying the model, we may express the 
conditional distribution of the model, p(xtlx:=~, 8), as 

n 

p(Xtlx!=~; 8) = L gj (x!=~; Og)p(Xtlx!=~; OJ, O"j), (1) 
j=l 
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o Vx~=~. We assume that the parameter vector e E n, a compact subset of 
JR2n(d+1) . 

Following the work of Jordan and Jacobs [2] we take the probability density func­
tions to be Gaussian with mean Of X:=~ + OJ,O and variance (7j (representative 
of the underlying, local AR{d) model). The function 9j{X; Og) == exp{O~x + 
Og; .O}/(E~1 exp{O~x + Ogi.O}' thus implementing a multiple output logistic re­
gression function. 

The underlying non-linear mapping (i.e., the conditional expectation, or L2 pre­
diction function) characterizing the MEM, is described by using (1) to obtain the 
conditional expectation of Xt, 

n 

f~ = E[XtIX:=~; Mn] = L 9j{X:=~; Og)[Of X:=~ + OJ,o]' (2) 
j=1 

where Mn denotes the MEM model. Here the subscript n stands for the number 
~ () _ t-l d ~ 

of experts . Thus, we have X t = fn = fn(Xt_d; e) where fn : JR x n ---+ JR, and Xt 
denotes the projection of X t on the 'relevant past', given the model, thus defining 
the model predictor function. 

We will use the notation MEM(n; d) where n is the number of experts in the model 
(proportional to the complexity, or number of parameters in the model), and d the 
lag size. In this work we assume that d is known and given. 

3 Main results 

3.1 Background 

We consider a stationary time series, more precisely a discrete time stochastic pro­
cess {Xd which is assumed to be strictly stationary. We define the L2 predictor 
function 

f = E[X IXt- 1 ] = E[X IXt- 1 ] - t -00 t t-d a.s. 

for some fixed lag size d. Markov chains are perhaps the most widely encountered 
class of probability models exhibiting this dependence. The NAR(d), that is non­
linear AR{ d), model is another example, widely studied in the context of time series 
(see [4] for details). Assuming additive noise, the NAR(d) model may be expressed 
as 

(3) 

We note that in this formulation {cd plays the role of the innovation process for 
Xt, and the function fe) describes the information on X t contained within its past 
history. 

In what follows, we restrict the discussion to stochastic processes satisfying certain 
constraints on the memory decay, more precisely we are assuming that {Xd is an 
exponentially a-mixing process. Loosely stated, this assumption enables the process 
to have a law of large numbers associated with it, as well as a certain version of 
the central limit theorem. These results are the basis for analyzing the asymptotic 
behavior of certain parameter estimators (see, [9] for further details), but other than 
that this assumption is merely stated here for the sake of completeness. We note in 
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passing that this assumption may be substantially weakened, and still allow similar 
results to hold, but requires more background and notation to be introduced, and 
therefore is not pursued in what follows (the reader is referred to [1] for further 
details). 

3.2 Objectives 

Knowing the L2 predictor function, f, allows optimal prediction of future samples, 
where optimal is meant in the sense that the predicted value is the closest to the true 
value of the next sample point, in the mean squared error sense. It therefore seems a 
reasonable strategy, to try and learn the optimal predictor function, based on some 
finite realization of the stochastic process, which we will denote VN = {Xt}t!t'H. 
Note that for N » d, the number of sample points is approximately N. 

We therefore define our objective as follows. Based on the data V N , we seek the 
'best' approximation to f, the L2 predictor function, using the MEM(n, d) predictor 
f~ E Mn as the approximator model. 

More precisely, define the least squares (LS) parameter estimator for the MEM(n, d) 
as 

N 
A • "[ t-I]2 9n,N = arg~l~ L.t Xt - fn(Xt _ d , 9) 

t=d+l 

where fn(X:=~, 9) is f~ evaluated at the point X:=~, and define the LS functional 
estimator as 

A _ (J 
fn,N = fnl(J=on,N 

where 9n ,N is the LS parameter estimator. 

Now, define the functional estimator risk as 

MSE[f, in,N] == Ev [/ If - in'NI2dv] 

where v is the d fold probability measure of the process {Xt}. In this work we 
maintain that the integration is over some compact domain Id C Rd, though recent 
work [3] has shown that the results can be extended to Rd, at the price of slightly 
slower convergence rates. 

It is reasonable, and quite customary, to expect a 'good' estimator to be one that 
is asymptotically unbiased. However, growth of the sample size itself need not, and 
in general does not, mean that the estimator is 'becoming' unbiased. Consequently, 
as a figure of merit, we may restrict attention to the approximation capacity of the 
model. That is we ask, what is the error in approximating a given class of predictor 
functions, using the MEM(n, d) (Le., {Mn}) as the approximator class. 

To measure this figure, we define the optimal risk as 

where f~ == f!I(J=(J* and 

MSE[j, f~] == / If - f~12dv, 

9~ = argmin/ If - f~12dv, 
(JE9 
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that is, 9~ is the parameter minimizing the expected L2 loss function. One may 
think of f~ as the 'best' predictor function in the class of approximators, i.e., the 
closest approximation to the optimal predictor, given the finite complexity, n, (Le., 
finite number of parameters) of the model. Here n is simply the number of experts 
(AR models) in the architecture. 

3.3 Upper Bounds on the Mean Squared Error and Universal 
Approximation Results 

Consider first the case where we are simply interested in approximating the function 
f, assuming it belongs to some class of functions. The question then arises as to 
how well one may approximate f by a MEM architecture comprising n experts. The 
answer to this question is given in the following proposition, the proof of which can 
be found in [8]. 

Proposition 3.1 (Optimal risk bounds) Consider the class of functions Mn de­
fined in (2) and assume that the optimal predictor f belongs to a Sobolev class 
containing r continuous derivatives in L 2 • Then the following bound holds: 

MSE[f, f~] ::; n2~jd 

where c is a constant independent of n . 

(4) 

PROOF SKETCH: The proof proceeds by first approximating the normalized gating 
function gj 0 by polynomials of finite degree, and then using the fact that poly­
nomials can approximate functions in Sobolev space to within a known degree of 
approximation. 

The following main theorem, establishing upper bounds on the functional estimator 
risk, constitutes the main result of this paper. The proof is given in [9]. 

Theorem 3.1 (Upper bounds on the estimator risk) 
Suppose the stochastic process obeys the conditions set forth in the previous section. 
Assume also that the optimal predictor function, f, possesses r smooth derivatives 
in L 2 . Then for N sufficiently large we have 

~ c m* ( 1 ) 
MSE[j, fn,N] ::; n2rjd + 2; + 0 N ' (5) 

where r is the number of continuous derivatives in L2 that f is assumed to possess, 
d is the lag size, and N is the size of the data set 'DN · 

PROOF SKETCH: The proof proceeds by a standard stochastic Taylor expansion of 
the loss around the point 9~. Making common regularity assumptions [1] and using 
the assumption on the a-mixing nature of the process allows one to establish the 
usual asymptotic normality results, from which the result follows. 

We use the notation m~ to denote the effective number of parameters. More pre­
cisely, m~ = Tr{B~(A~)-l} and the matrices A* and B* are related to the Fisher 
information matrix in the case of misspecified estimation (see [1] for further dis­
cussion). The upper bound presented in Theorem 3.1 is related to the classic bias 
- variance decomposition in statistics and the obvious tradeoffs are evident by in­
spection. 
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3.4 Comments 

It follows from Proposition 3.1 that the class of mixtures of experts is a universal 
approximator, w.r.t. the class of target functions defined for the optimal predictor. 
Moreover, Proposition 3.1 establishes the rate of convergence of the approximator, 
and therefore relates the approximation error to the number of experts used in the 
architecture (n) . 

Theorem 3.1 enhances this result, as it relates the sample complexity and model 
complexity, for this class of models. The upper bounds may be used in defining 
model selection criteria, based on upper bound minimization. In this setting, we 
may use an estimator of the stochastic error bound (i.e., the estimation error), to 
penalize the complexity of the model, in the spirit of Ale, MDL etc (see [8] for 
further discussion). 

At a first glance it may seem surprising to find that a combination of linear models 
is a universal function approximator. However, one must keep in mind that the 
global model is nonlinear, due to the gating network. Nevertheless, this result does 
imply, at least on a theoretical ground, that one may restrict the MEM{n, d) to 
be locally linear, without loss of generality. Thus, taking a simple local model, 
enabling efficient and tractable learning algorithms (see [2]), still results in a rich 
global model. 

3.5 Comparison 

Recently, Mhaskar [5] proved upper bounds on a feedforward sigmoidal neural net­
work, for target functions in the same class as we consider herein, i.e., the Sobolev 
class. The bound we have obtained in Proposition 3.1, and its extension in [8], 
demonstrate that w.r.t. to this particular target class, neural networks and mix­
tures of experts are equivalent. That is, both models attain optimal precision in 
the degree of approximation results (see [5] for details of this argument). Keeping 
in mind the advantages of the MEM with respect to learning and generalization 
[2], we believe that our results lend further credence to the emerging view as to 
the superiority of modular architectures over the more standard feed forward neural 
networks. 

Moreover, the detailed proof of Proposition 3.1 (see [8]) actually takes the 
MEM(n, d) to be made up of local constants. That is, the linear experts are degen­
erated to constant functions. Thus, one may conjecture that mixtures of experts 
are in fact a more general class than feedforward neural networks, though we have 
no proof of this as of yet. 

Two nonlinear alternatives, generalizing standard statistical linear models, have 
been pointed out in the introductory section. These are Tong's TAR (threshold 
autoregressive) model [7], and the more general SDM (state dependent models) 
introduced by Priestley. The latter models can be reduced to a TAR model by 
imposing a more restrictive structure (for further details see [6]) . We have shown, 
based on the results described above (see [9]), that the MEM may be viewed as a 
generalization of the SDM (and consequently of the TAR model). The relation to 
the state dependent models is of particular interest, as the mixtures of experts is 
structured on state dependence as well. Exact statement and proofs of these facts 
can be found in [9] . 
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We should also note that we have conducted several numerical experiments, com­
paring the performance of the MEM with other approaches. We tested the model 
on both synthetic as well as real-world data. Without any fine-tuning of parameters 
we found the performance of the MEM, with linear expert functions, to compare 
very favorably with other approaches (such as TAR, ARMA and neural networks). 
Details of the numerical results may be found in [9]. Moreover, the model also 
provided a very natural and intuitive segmentation of the process. 

4 Discussion 

In this work we have pursued a novel non-linear model for prediction in stationary 
time series. The mixture of experts model (MEM) has been demonstrated to be a 
rich model, endowed with a sound theoretical basis, and compares favorably with 
other, state of the art, nonlinear models . 

We hope that the results of this study will aid in establishing the MEM as, yet an­
other, powerful tool for the study of time-series applicable to the fields of statistics, 
economics, and signal processing. 
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