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ABSTRACT 

We propose a neuromorphic architecture for real-time processing of 
acoustic transients in analog VLSI. We show how judicious normalization 
of a time-frequency signal allows an elegant and robust implementation 
of a correlation algorithm. The algorithm uses binary multiplexing instead 
of analog-analog multiplication. This removes the need for analog 
storage and analog-multiplication. Simulations show that the resulting 
algorithm has the same out-of-sample classification performance (-93% 
correct) as a baseline template-matching algorithm. 

1 INTRODUCTION 

We report progress towards our long-term goal of developing low-cost, low-power, low­
complexity analog-VLSI processors for real-time applications. We propose a neuromorphic 
architecture for acoustic processing in analog VLSI. The characteristics of the architecture 
are explored by using simulations and real-world acoustic transients. We use acoustic 
transients in our experiments because information in the form of acoustic transients 
pervades the natural world. Insects, birds, and mammals (especially marine mammals) 
all employ acoustic signals with rich transient structure. Human speech, is largely composed 
of transients and speech recognizers based on transients can perform as well as recognizers 
based on phonemes (Morgan, Bourlard,Greenberg, Hermansky, and Wu, 1995). Machines 
also generate transients as they change state and as they wear down. Transients can be 
used to diagnose wear and abnormal conditions in machines. 
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In this paper, we consider how algorithmic choices that do not influence classification 
performance, make an initially difficult-to-implement algorithm, practical to implement. 
In particular, we present a practical architecture for performing real-time recognition of 
acoustic transients via a correlation-based algorithm. Correlation in analog VLSI poses 
two fundamental implementation challenges. First, there is the problem of template storage, 
second, there is the problem of accurate analog multiplication. Both problems can be 
solved by building sufficiently complex circuits. This solution is generally unsatisfactory 
because the resulting processors must have less area and consume less power than their 
digital counterparts in order to be competitive. Another solution to the storage problem is 
to employ novel floating gate devices. At present such devices can store analog values 
for years without significant degradation. Moreover, this approach can result in very 
compact, yet computationally complex devices. On the other hand, programming floating 
gate devices is not so straight-forward. It is relatively slow, it requires high voltage and it 
degrades the floating gate each time it is reprogrammed. Our "solution" is to side-step the 
problem completely and to develop an algorithmic solution that requires neither analog 
storage nor analog multiplication. Such an approach is attractive because it is both 
biologically plaUSible and electronically efficient. We demonstrate that a high level of 
classification performance on a real-world data set is achievable with no measurable loss 
of performance, compared to a baseline correlation algorithm. 

The acoustic transients used in our experiments were collected by K. Ryals and O. 
Steigerwald and are described in (Pineda, Ryals, Steigerwald and Furth, 1995). These 
transients consist of isolated Bangs, Claps, Clicks, Cracks, Oinks, Pings, Pops, Slaps, 
Smacks, Snaps, Thuds and Whacks that were recorded on OAT tape in an office environment. 
The ambient noise level was uncontrolled, but typical of a single-occupant office. 
Approximately 221 transients comprising 10 classes were collected. Most of the energy 
in one of our typical transients is dissipated in the first 10 ms. The remaining energy is 
dissipated over the course of approximately 100 ms. The transients had durations of 
approximately 20-100 ms. There was considerable in-class and extra-class variability in 
duration. The duration of a transient was determined automatically by a segmentation 
algorithm described below. The segmentation algorithm was also used to align the templates 
in the correlation calculations. 

2 THE BASELINE ALGORITHM 

The baseline classification algorithm and its performance is described in Pineda, et al. 
(1995). Here we summarize only its most salient features. Like many biologically motivated 
acoustic processing algorithms, the preprocessing steps include time-frequency analysis, 
rectification, smoothing and compression via a nonlinearity (e.g. Yang, Wang and Shamma, 
1992). Classification is performed by correlation against a template that represents a 
particular class. In addition , there is a "training" step which is required to create the 
templates. This step is described in the "correlation" section below. We turn now to a 
more detailed description of each processing step. 

A. Time-frequency Analysis: Time-frequency analysis for the baseline algorithm and the 
simulations performed in this work, was performed by an ultra-low power (5 .5 mW) 
analog VLSI filter bank intended to mimic the processing performed by the mammalian 
cochlea (Furth, Kumar, Andreou and Goldstein, 1994). This real-time device creates a 
time-frequency representation that would ordinarily require hours of computation on a 
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high-speed workstation. More complete descriptions can be found in the references. The 
time-frequency representation produced by the filter bank is qualitatively similar to that 
produced by a wavelet transformation. The center frequencies and Q-factors of each 
channel are uniformly spaced in log space. The low frequency channel is tuned to a 
center frequency of 100 Hz and Q-factor of 1.0, while the high frequency channel is 
tuned to a center frequency of 6000 Hz and Q-factor 3.5. There are 31 output channels . 
The 31-channel cochlear output was digitized and stored on disk at a raw rate of 256K 
samples per second. This raw rate was distributed over 32 channels, at rates appropriate 
for each channel (six rates were used, 1 kHz for the lowest frequency channels up to 32 
kHz for the highest-frequency channels and the unfiltered channel). 

B. Segmentation: Both the template calculation and the classification algorithm rely on 
having a reliable segmenter. In our experiments, the transients are isolated and the noise 
level is low, therefore a simple segmenter is all that is needed. Figure 2. shows a 
segmenter that we implemented in software and which consists of a three layer neural 
network. 

noisy segmentation bit clean segmentation bit 

Figure 2: Schematic diagram showing the segmenter network 

The input layer receives mean subtracted and rectified signals from the cochlear filters . 
The first layer simply thresholds these signals . The second layer consists of a single unit 
that accumulates and rethresholds the thresholded signals . The second layer outputs a 
noisy segmentation signal that is nonzero if two or more channels in the input layer 
exceed the input threshold. Finally, the output neuron cleans up the segmentation signal 
by low-pass filtering it with a time-scale of 10 ms (to fill in drop outs) and by low-pass 
filtering it with a time-scale of 1 ms (to catch the onset of a transient). The outputs of the 
two low-pass filters are OR'ed by the output neuron to produce a clean segmentation bit. 

The four adjustable thresholds in the network were determined empirically so as to 
maximize the number of true transients that were properly segmented while minimizing 
the number of transients that were missed or cut in half. 

C. Smoothing & Normalization: The raw output of the filter bank is rectified and smoothed 
with a single pole filter and subsequently normalized. Smoothing was done with a the 
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same time-scale (l-ms) in all frequency channels. Let X(t) be the instantaneous vector 
of rectified and smoothed channel data, then the instantaneous output of the normalizer is 

X(t) = ~(t) II. Where () is a positive constant whose purpose is to prevent the 
()+ X(t) 

normalization stage from amplifying noise in the absence of a transient signal. With this 

normalization we have IIX(t)lt z 0 if IIX(t)lll «(), and IIX(t)lll z 1 if IIX(t)lll » (). Thus 

() effectively determines a soft input threshold that transients must exceed if they are to 
be normalized and passed on to higher level processing. 

A sequence of normalized vectors over a time-window of length T is used as the feature 
vector for the correlation and classification stages of the algorithm. Figure 3. shows four 
normalized feature vectors from one class of transients (concatenated together) . 
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Figure 3.: Normalized representation of the first 4 exemplars from one class of transients. 

D. Correlation: The feature-vectors are correlated in the time-frequency domain against 
a set of K time-frequency templates. The k - th feature-vector-template is precalculated 
by averaging over a corpus of vectors from the k - th class. Thus, if Ck represents 

the k - th transient class, and if ( ) k represents an average over the elements in a class, 

e.g. (X(t»)k = E{X(t)IX(t)E Ck}. Then the template is of the form bk(t) = (X(t»)k · The 

instantaneous output of the correlation stage is a K -dimensional vector c(t)whose 
t A 

k -th component is ck(t) = LX(t)· bk(t). The time-frequency window over which the 
t'=t-T 

correlations are performed is of length T and is advanced by one time-step between 
correlation calculations. 

E. Classification The classification stage is a simple winner-take-all algorithm that assigns 
a class to the feature vector by picking the component of ck(t) that has the largest value 

at the appropriate time, i.e. class = argmax{ck(tvalid)}' 
k 
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The segmenter is used to determine the time tva1idwhen the output of the winner-take-all 
is to be used for classification. This corresponds to properly aligning the feature vector 
and the template. Leave-one-out cross-validation was used to estimate the out-of-sample 
classification performance of all the algorithms described in this paper. The rate of 
correct classification for the baseline algorithm was 92.8%. Out of a total of 221 events 
that were detected and segmented, 16 were misclassified. 

3 A CORRELATION ALGORITHM FOR ANALOG VLSI 

We now address the question of how to perform classification without performing analog­
analog multiplication and without having to store analog templates. To provide a better 
understanding of the algorithm, we present it as a set of incremental modifications to the 
baseline algorithm. This will serve to make clear the role played by each modification. 

Examination of the normalized representation in figure 3 suggests that the information 
content of anyone time-frequency bin cannot be very high. Accordingly, we seek a 
highly compressed representation that is both easy to form and with which it is easy to 
compute. As a preliminary step to forming this compressed representation, consider 
correlating the time-derivative of the feature vector with the time-derivative of the template, 

ckU)= I,t~(t).bk(t) where bk(t) = (X(t)}k' 

This modification has no effect on the out-of-sample performance of the winner-take-all 
classification algorithm. The above representation, by itself, has very few implementation 
advantages. It can, in principal, mitigate the effect of any systematic offsets that might 
emerge from the normalization circuit. Unfortunately, the price for this small advantage 
would be a very complex multiplier. This is evident since the time-derivative of a positive 
quantity can have either sign, both the feature vector and the template are now bipolar. 
Accordingly the correlation hardware would now require 4-quadrant analog-analog 
multipliers. Moreover the storage circuits must handle bipolar quantities as well. 

The next step in forming a compressed representation is to replace the time-differentiated 
template with just a sign that indicates whether the template value in a particular channel 

is increasing or decreasing with time. This template is b' k (t) = Sign( (XU)} k J. We denote 

this template as the [-1,+ 1]-representation template. The resulting classification algorithm 
yields exactly the same out-of-sample performance as the baseline algorithm. The 4-quadrant 
analog-analog multiply of the differentiated representation is reduced to a "4-quadrant 
analog-binary" multiply. The storage requirements are reduced to a single bit per time­
frequency bin. To simplify the hardware yet further, we exploit the fact that the time 
derivative of a random unit vector net) (with respect to the I-norm) satisfies 

E{ ~Sign«(Uv))iv} = 2E{ ~e«(uv))iv} 
where e is a step function. Accordingly, if we use a template whose elements are in 

[0,1] instead of [-1, + 1], i.e. b' I k (t) = e( (X(t)} k)' we expect 

E{ ~ b' vXv } = 2E{ b' I v Xv} = IlxlI" provided the feature vector X(t) is drawn from the 
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same class as is used to calculate the template. Furthermore, if the feature vector and the 
template are statistically independent, then we expect that either representation will produce 

a zero correlation, E{ ~ h' j(v } = E{ h" v Xv} = 0 . In practice, we find that the difference 

in correlation values between using the [0,1] and the [-1,+1] representations is simply a 
scale factor (approximately equal to 2 to several digits of precision). This holds even 
when the feature vectors and the templates do not correspond to the same class. Thus the 
difference between the two representations is quantitatively minor and qualitatively 
nonexistent, as evidenced by our classification experiments, which show that the out-of­
sample performance of the [0,1] representation is identical to that of the [-1,+1] 
representation. Furthermore, changing to the [0,1] representation has no impact on the 
storage requirements since both representations require the storage of single bit per time­
frequency bin. On the other hand, consider that by using the [0,1] representation we now 
have a "2-quadrant analog-binary" multiply instead of a "4-quadrant analog-binary" 
multiply. Finally, we observe that differentiation and correlation are commuting operations, 

A 

thus rather than differentiating X(t) before correlation, we can differentiate after the 
correlation without changing the result. This reduces the complexity of the correlation 

operation still further, since the fact that both X(t) and h" k (t) are positive means that 
we need only implement a correlator with I-quadrant analog-binary multiplies. 

The result of the above evolution is a correlation algorithm that empirically performs as 
well as a baseline correlation algorithm, but only requires binary-multiplexing to perform 
the correlation. We find that with only 16 frequency channels and 64 time bins (1024-
bits/templates) , we are able to achieve the desired level of performance. We have undertaken 
the design and fabrication of a prototype chip. This chip has been fabricated and we will 
report on it's performance in the near future. Figure 4 illustrates the key architectural 
features of the correlator/memory implementation. The rectified and 

1-norm correlator/memory 

input 

Figure 4: Schematic architecture of the k-th correlator-memory. 

smoothed frequency-analyzed signals are input from the left as currents. The currents are 
normalized before being fed into the correlator. A binary time-frequency template is 
stored as a bit pattern in the correlator/memory. A single bit is stored at each time and 
frequency bin. If this bit is set, current is mirrored from the horizontal (frequency) lines 
onto vertical (aggregation) lines. Current from the aggregation lines is integrated and 
shifted in a bucket-brigade analog shift register. The last two stages of the shift register 
are differenced to estimate a time-derivative. 

4 DISCUSSION AND CONCLUSIONS 

The correlation algorithm described in the previous section is related to the zero-crossing 



740 F. J Pineda, G. Cauwenberghs and R. T. Edwards 

representation analyzed by Yang, Wang. and Shamma (1992). This is because bit flips 
in the templates correspond to the zero crossings of the expected time-derivative of the 
normalized "energy-envelope." Note that we do not encode the incoming acoustic signal 
with a zero-crossing representation. Interestingly enough, if both the analog signal and 
the template are reduced to a binary representation, then the classification performance 
drops dramatically. It appears that maintaining some analog information in the processing 
path is significant. 

The frequency-domain normalization approach presented above throws away absolute 
intensity information. Thus, low intensity resonances that remain excited after the initial 
burst of acoustic energy are as important in the feature vector as the initial burst of 
energy. These resonances can contain significant information about the nature of the 
transient but would have less weight in an algorithm with a different normalization 
scheme. Another consequence of the normalization is that even a transient whose spectrum 
is highly concentrated in just a few frequency channels will spread its information over 
the entire spectrum through the normalization denominator. The use of a normalized 
representation thus distributes the correlation calculation over very many frequency 
channels and serves to mitigate the effect of device mismatch. 

We consider the proposed correlator/memory as a potential component in more sophisticated 
acoustic processing systems. For example, the continuously generated output of the 
correlators , c(t), is itself a feature vector that could be used in more sophisticated 
segmentation and/or classification algorithms such as the time-delayed neural network 
approach ofUnnikrishnan, Hopfield and Tank (1991). 

The work reported in this report was supported by a Whiting School of Engineering! Applied 
Physics Laboratory Collaborative Grant. Preliminary work was supported by an APL 
Internal Research & Development Budget. 
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