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Abstract 

In this paper we propose a model for the lateral connectivity of 
orientation-selective cells in the visual cortex based on information­
theoretic considerations. We study the properties of the input sig­
nal to the visual cortex and find new statistical structures which 
have not been processed in the retino-geniculate pathway. Applying 
the idea that the system optimizes the representation of incoming 
signals, we derive the lateral connectivity that will achieve this for 
a set of local orientation-selective patches, as well as the complete 
spatial structure of a layer of such patches. We compare the results 
with various physiological measurements. 

1 Introduction 

In recent years much work has been done on how the structure of the visual sys­
tem reflects properties of the visual environment (Atick and Redlich 1992; Attneave 
1954; Barlow 1989). Based on the statistics of natural scenes compiled and studied 
by Field (1987) and Ruderman and Bialek (1993), work was done by Atick and 
Redlich (1992) on the assumption that one of the tasks of early vision is to re­
duce the redundancy of input signals, the results of which agree qualitatively with 
numerous physiological and psychophysical experiments. Their ideas were further 
strengthened by research suggesting the possibility that such structures develop via 
simple correlation-based learning mechanisms (Atick and Redlich 1993; Dong 1994). 

As suggested by Atick and Li (1994), further higher-order redundancy reduction 
of the luminosity field in the visual processing system is unlikely, since it gives 
little benefit in information compression. In this paper we apply similar ideas to a 
different input signal which is readily available to the system and whose statistical 
properties are lost in the analysis of the luminosity signal. We note that after the 
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application of the retinal "mexican hat" filter the most obvious salient features 
that are left in images are sharp changes in luminosity, for which the filter is not 
optimal, i.e. local edges. Such edges have correlations which are very different 
from the luminosity autocorrelation of natural images (Field 1987) , and have zero 
probability measure in visual scenes, so they are lost in the ensemble averages used 
to compute the autocorrelation function of natural images. We know that this 
signal is projected to a set of direction-sensitive units in VI for each distinct retinal 
position, thereby introducing new redundancy in the signal. Thus the necessity for 
compression and use of factorial codes arises once again. 

Since local edges are defined by sharp changes in the luminosity field, we can use 
a derivative operation to pick up the pertinent structure. Indeed, if we look at the 
gradient of the luminosity as a vector field, its magnitude at a point is proportional 
to the change of luminosity, so that a large magnitude signals the possible presence of 
a discontinuity in the luminosity profile. Moreover, in two dimensions, the direction 
of the gradient vector is perpendicular to the direction of the possible local edge, 
whose presence is given by the magnitude. These properties define a one-to-one 
correspondence between large gradients and local edges. 

The structure of the network we use reflects what is known about the structure of 
V!. We select as our system a layer of direction sensitive cells which are laterally 
connected to one another, each receiving input from the previous layer. We assume 
that each unit receives as input the directional derivative of the luminosity signal 
along the preferred visuotopic axis of the cell. This implies that locally the input to 
a cell is proportional to the cosine of the angle between the unit's preferred direction 
and the local gradient (edge). Thus each unit receives a broadly tuned signal, with 
HW-HH approximately 600 • With this feed-forward structure, the idea that the 
system is trying to decorrelate its inputs suggests a way to calculate the lateral 
connections that will perform this task. This calculation, and a further study of the 
statistical properties of the input is the topic of the paper. 

2 Mathematical Model 

Let G(x) = (Gl(x), G2(x» be the gradient of luminosity at x . Assume that there 
is a set of N detectors with activity Oi at x, each with a preferred direction ni. 
Let the input from the previous layer to each detector be the directional derivative 
along its preferred direction. 

d 
Vi(x) = IGrad(L(x».nil = Idni L(x)1 (1) 

There are long range correlations in the inputs to the network due both to the 
statistical structure of the natural images and the structure of the input . The 
simplest of them are captured in the two-point correlation matrix Rij(Xl , X2) =< 
Vi(XI)Vj(X2) >, where the averaging is done across images. Then R is a block 
matrix, with an N x N matrix at each spatial position (Xl, X2)' 

We formulate the problem in terms of a recurrent kernel W, so that 

(2) 

The biological interpretation of this is that V is the effective input to VI from 
the LGN and W specifies the lateral connectivity in V!. This equation describes 
the steady state of the linear dynamical system 6 = -0 + W * 0 + V. The 
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above recurrent system has a solution for 0 not an eigenfunction of W in the form 
0= (6 - W)-l * V = K * V. This suggests that there is an equivalent feed-forward 
system with a transfer function K = (6 - W)-l and we can consider only such 
systems. 

The corresponding feed-forward system is a linear system that acts on the input 
Vex) to produce an output O(x) = (1<. V)(x) == J K(x, y). V(y)dy. If we use Bar­
low's redundancy reduction hypothesis (Barlow 1989), this filter should decorrelate 
the output signal. This is achieved by requiring that 

6(X1 - X2) '" < O(xd 0 0(X2) >=< (K . V)(X1) 0 (K . V)(X2) >{:} 
6(X1 - X2) '" K· R . KT (3) 

The aim then is to solve (3) for K. Obviously, this is equivalent to KT . K "" R- 1 

(assuming K and R are non-singular), which has a solution K '" R-t, unique up 
to a unitary transformation . The corresponding recurrent filter is then 

(4) 

This expression suggests an immediate benefit in the use of lateral kernels by the 
system. As (4) shows, the filter does not now require inverting the correlation matrix 
and thus is more stable than a feed-forward filter. This also helps preserve the local 
structure of the autocorrelator in the optimal filter, while, because of the inversion 
process, a feed-forward system will in general produce non-local, non-topographic 
solutions. 

To obtain a realistic connectivity structure, we need to explicitly include the effects 
of noise on the system. The system is then described by 0 1 = V + N1 + M * W * 
(01 + N2), where N1 is the input noise and N2 is the noise, generated by individual 
units in the recurrently connected layer . Similarly to a feed-forward system (Atick 
and Redlich 1992), we can modify the decorrelation kernel W derived from (2) to 
M * W. The form of the correction M, which minimizes the effects of noise on 
the system, is obtained by minimizing the distance between the states of the two 
systems. If we define X2(M) =< 10 - 0 1 12 > as the distance function, the solution 

to ox;1M ) = 0 will give us the appropriate kernel. A solution to this problem is 

M * W = 6 - (R + Nf + Ni) * (p R 1/ 2 + Ni)-l (5) 

We see that it has the correct asymptotics as N1, N2 approach zero . The filter be­
haves well for large N2 , turning mostly into a low-pass filter with large attenuation. 
It cannot handle well large N1 and reaches -00 proportionally to N'f. 

3 Results 

3.1 Local Optimal Linear Filter 

As a first calculation with this model, consider its implications for the connectivity 
between units in a single hypercolumn. This allows for a very simple application 
of the theory and does not require any knowledge of the input signal under very 
general assumptions. 

We assume that direction selective cells receive as input from the previous layer the 
projection of the gradient onto their preferred direction. Thus they act as directional 
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derivatives, so that their response to a signal with the luminosity profile L( x) and 
no input from other lateral units is Vi(x) = IGrad(L(x)).nil = Idldni(L(x))1 

With this assumption the outputs of the edge detectors are correlated. Define a 
(local) correlation matrix R;j =< ViVj >. By assumption (1), Vk = la Gas(a -
ak)1, where a and a are random, independent variables, denoting the magnitude 
and direction of the local gradient and ak is the preferred angle of the detector . 
Assuming spatially isotropic local structure for natural scenes, we can calculate the 
average of R by integrating over a uniform probability measure in a. Then 

(6) 

where A =< a2 > can be factored because of the assumption of statistical inde­
pendence. By the homogeneity assumption, Rij is a function of the relative angle 
lai - aj I only. This allows us to easily calculate the integral in (6) from its Fourier 
series. Indeed, in Fourier space R is just the square of the power spectrum of the 
underlying signal, i.e., cos(a) on [0, 7r] . Thus we obtain the form of R analytically. 

Knowing the local correlations, we can find a recurrent linear filter which decorre­
lates the outputs after it is applied. This filter is W = 0 - p R-! (Sec.2), unique 
up to a unitary transformation . 
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Figure 1: Local recurrent filter in the presence of noise. The connection strength W 
depends only on the relative angle (J between units. 

If we include noise in the calculation according to (5), we obtain a filter which 
depends on the signal to noise ratio of the input level. We model the noise process 
here as a set of independent noise processes for each unit, with (Ndi being the 
input noise and (N2)i the output noise for unit i. All noise processes are assumed 
statistically independent. The result for SI N2 "" 3 is shown on Fig.I. We observe 
the broadening of the central connections, caused by the need to average local results 
in order to overcome the noise. It was calculated at very low Nl level, since, as 
mentioned in Section 2, the filter is unstable with respect to input noise. 

With this filter we can directly compare calculations obtained from applying it to a 
specific input signal, with physiological measurements of the orientation selectivity 
of cells in the cortex. The results of such comparisons are presented in Fig.2, in 
which we plot the activity of orientation selective cells in arbitrary units vs stimulus 
angle in degrees. We see very good matches with experimental results of Celebrini , 
Thorpe, Trotter, and Imbert (1993), Schiller, Finlay, and Volman (1976) and Orban 
(1984) . We expect some discrepancies, such as in Figures 2.D and 2.F, which can 
be attributed to the threshold nature of real neural units. We see that we can use 
the model to classify physiologically distinct cells by the value of the N2 parameter 
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that describes them. Indeed, since this parameter models the intrinsic noise of a 
neural unit, we expect it to differ across populations. 

A B c 
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Figure 2: Comparison with experimental data. The activity of orientation selective cells 
in arbitrary units is plotted against stimulus angle in degrees. Experimental points are 
denoted with circles, calculated result with a solid line. The variation in the forms of 
the tuning curves could be accounted for by selecting different noise levels in our noise 
model. A - data from cell CAJ4 in Celebrini et.al. and fit for Nl = 0.1, N2 = 0.2. B­
data from cell CAK2 in Celebrini et.al. and fit for Nl = 0.35, N2 = 0.1. C - data from 
a complex cell from Orban and fit for Nl = 0.3, N2 = 0.45. D - data from a simple cell 
from Orban and fit for Nl = 1.0, N2 = 0.45. E - data from a simple cells in Schiller et.al. 
and fit for Nl = 0.06, N2 = 0.001. F - data from a simple cells in Schiller et.al. and fit for 
Nl = 15.0, N2 = 0.01. 

3.2 Non-Local Optimal Filter 

We can perform a similar analysis of the non-local structure of natural images to 
design a non-local optimal filter. This time we have a set of detectors Vk(X) = 
la(x) Cos(a(x) - k 7r/N) I and a correlation function Rij(X, y) =< Vi(x) Vj(y) >, 
averaged over natural scenes. We assume that the function is spatially translation 
invariant and can be represented as Rij(X, y) = ~j(x - y) . The averaging was done 
over a set of about 100 different pictures, with 10-20 2562 samples taken from each 
picture. 

The structure of the correlation matrix depends both on the autocorrelator of the 
gradient field and the structure of the detectors, which are correlated. Obviously 
the fact that the output units compute la(x) Cos(a(x) - k7r/N)1 creates many local 
correlations between neighboring units. Any non-local structure in the detector set 
is due to a similar structure, present in the gradient field autocorrelator. 

The structure of the translation-invariant correlation matrix R( x) is shown in 
Fig.3A. This can be interpreted as the correlation between the input to the center 
hypercolumn with the input to rest of the hypercolumns. The result of the complete 
model (5) can be seen in Fig.3B. Since the filter is also assumed to be translation 
invariant, the pictures can be interpreted as the connectivity of the center hypercol­
umn with the rest of the network. This is seen to be concentrated near the diagonal , 
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Figure 3: A. The autocorrelation function of a set with 8 detectors. Dark represents high 
correlation, light - low correlation. The sets are indexed by the preferred angles Oi, OJ in 
units of f and each RiJ has spatial structure, which is represented as a 32 x 32 square. B. 
The lateral connectivity for the central horizontal selective unit with neighboring horizontal 
(1) and 1r/4 (2) selective units. Note the anisotropic connectivity and the rotation of the 
connectivity axis on the second picture. 

and weak in the two adjacent bands, which represent connections to edge detectors 
with a perpendicular preferred direction. The noise minimizing filter is a low pass 
filter, as expected, and thus decreases the high frequency component of the power 
spectrum of the respective decorrelating filter. 

4 Conclusions and Discussion 

We have shown that properties of orientation selective cells in the visual cortex can 
be partially described by some very simple linear systems analysis. Using this we 
obtain results which are in very good agreement with physiological and anatomical 
data of single-cell recordings and imaging. We can use the parameters of the model 
to classify functionally and structurally differing cells in the visual cortex. 

We achieved this by using a recurrent network as the underlying model. This was 
chosen for several reasons. One is that we tried to give the model biological plau­
sibility and recurrency is well established on the cortical level. Another related 
heuristic argument is that although there exists a feed-forward network with equiv­
alent properties, as shown in Section 2, such a network will require an additional 
layer of cells, while the recurrent model allows both for feed-forward processing (the 
input to our model) as well as manipulation of the output of that (the decorrelation 
procedure in our model). Finally, while a feed-forward network needs large weights 
to amplify the signal, a recurrent network is able to achieve very high gains on the 
input signal with relatively small weights by utilizing special architecture. As can 
be seen from our equivalence model, K = (6 - W)-l, so if W is so constructed as 
to have an eigenvalues close to 1, it will produce enormous amplification. 

Our work is based on previous suggestions relating the structure of the visual envi­
ronment to the structure of the visual pathway. It was thought before (Atick and 
Li 1994) that this particular relation can describe only early visual pathways, but 
is insufficient to account for the structure of the striate cortex. We show here that 
redundancy reduction is still sufficient to describe many of the complexities of the 
visual cortex, thus strengthening the possibility that this is a basic building princi-
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pIe for the visual system and one should anticipate its appearance in later regions 
of the latter. 

What is even more intriguing is the possibility that this method can account for 
the structure of other sensory pathways and cortices. We know e.g. that the so­
matosensory pathway and cortex are similar to the visual ones, because of the similar 
environments that they encounter (luminosity, edges and textures have analogies in 
somesthesia). Similar analogies may be expected for the auditory pathway. 

We expect even better results if we consider a more realistic non-linear model for 
the neural units. In fact this improves tremendously the information-processing 
abilities of a bounded system, since it captures higher order correlations in the 
signal and allows for true minimization of the mutual information in the system, 
rather than just decorrelating. Very promising results in this direction have been 
recently described by Bell and Sejnowski (1996) and Lin and Cowan (1997) and we 
intend to consider the implications for our model. 
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